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a b s t r a c t

We present a spatially explicit Landscape Fire-Succession Model (LFSM) developed to represent Medi-
terranean Basin landscapes and capable of integrating modules and functions that explicitly represent
human activity. Plant-functional types are used to represent spatial and temporal competition for
resources (water and light) in a rule-based modelling framework. Vegetation dynamics are represented
using a rule-based community-level modelling approach that considers multiple succession pathways
and vegetation climax states. Wildfire behaviour is represented using a cellular-automata model of fire
spread that accounts for land-cover flammability, slope, wind and vegetation moisture. Results show that
wildfire spread parameters have the greatest influence on two aspects of the model: land-cover change
and the wildfire regime. This sensitivity highlights the importance of accurately parameterising this type
of grid-based model for representing landscape-level processes. We use a pattern-oriented modelling
approach in conjunction with wildfire power-law frequency-area scaling exponent b to calibrate the
model. Parameters describing the role of soil moisture on vegetation dynamics are also found to
significantly influence land-cover change. Recent improvements in understanding the role of soil
moisture and wildfire fuel loads at the landscape-level will drive advances in Mediterranean LFSMs.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Landscape Fire-Succession Models (LFSMs) simulate the dynamic
interaction of fire, vegetation, and often climate, in a spatially explicit
manner (Keane et al., 2004). LFSMs have been used to model many
different (mainly forest) ecosystems, including boreal (Pennanen
et al., 2004), mixed broadleaf-conifer (He and Mladenoff, 1999), and
maquis-forest mosaics (Perry and Enright, 2002), across extents of
101–104 km2 and durations of 101–103 yr. Being spatially explicit,
LFSMs are able to examine the spatial interaction of ecological
processes through time (e.g., wildfire occurrence and vegetation
regeneration). This is particularly important in spatially heteroge-
neous environments, such as those found in the Mediterranean Basin.
The characteristic complexity and heterogeneity of Mediterranean
Basin landscapes have led some to doubt the feasibility of spatially
explicit, physiologically based forest modelling that has been possible
in other ecosystems (e.g., more temperate regions Zavala et al., 2000).
All rights reserved.
Consequently, vegetation functional types have generally been
adopted in recent models of Mediterranean forest succession-distur-
bance dynamics (e.g., Zavala and Zea, 2004; Pausas, 2006). Some
authors have advocated the use of rule-based modelling frameworks
that can incorporate quantitative and qualitative understanding to
negotiate the relatively poor process understanding in regions such as
the Mediterranean (McIntosh, 2003; McIntosh et al., 2003). This paper
presents the development and testing of a LFSM that utilises plant-
functional types in a rule-based framework to examine vegetation-
wildfire dynamics for a Mediterranean landscape.

Human activity has a long history in the Mediterranean Basin.
Evidence of human modification of landscape patterns and processes
is widespread across the region (Wainwright and Thornes, 2004).
Changes in the pattern of human activity can have marked impacts
upon landscape dynamics. For example, abandonment of low-
intensity agricultural land has contributed to increased forest cover
around the northern rim of the Mediterranean Sea in recent decades
(Mazzoleni et al., 2004). If the consequences of such change(s) are to
be understood models that explicitly consider human activity as
a component of landscape dynamics will be required. The LFSM

mailto:jmil@msu.edu
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft


J.D.A. Millington et al. / Environmental Modelling & Software 24 (2009) 1196–1208 1197
presented in this paper is constructed with the intention of subse-
quently integrating an agent-based model of human land-use deci-
sion-making (Millington et al., 2008).

2. Spatial modelling of Mediterranean succession-
disturbance dynamics

2.1. Mediterranean vegetation dynamics

The deterministic, equilibrium-based Clementsian view of
succession (progressing toward a stable climax community) has
been intensely debated by ecologists (Perry, 2002). We use the term
‘succession’ to describe vegetation distribution and change due to
competition across shifting spatio-temporal resource gradients.
The traditional conceptualisation of succession in Mediterranean
landscapes is one where shade-intolerant pines are replaced by
shade-tolerant oaks that establish themselves in the pine under-
storey (e.g., Barbero et al., 1990; Zavala et al., 2000). However, this
pathway does not consider the role of disturbance and spatial
variation of resources in preventing this oak climax from being
reached. Vegetation establishment and succession in Mediterra-
nean-type ecosystems are dependent, in both time and space, on
resource gradients (moisture and light), disturbance type and
frequency, previous land-use/cover, and the vegetation of adjacent
land areas (via seed dispersal). Competition for water and light
following disturbance (such as wildfire) and along gradients of
these resources is the predominant cause of characteristic Medi-
terranean community structures (Vila and Sardans, 1999; Zavala
et al., 2000). Consequently, it is vital that models of Mediterranean
forest vegetation-dynamics consider the processes generated and
produced by disturbance and succession (Zavala et al., 2000).

2.2. Issues of scale and representation

The implementation of detailed models of wildfire-vegetation
dynamics at the landscape level (i.e., extents of 102–104 km2 over
decades) is hampered by the difficulties of scaling process knowledge
and information from fine grains to large extents and the associated
high levels of parameterisation that this scaling requires (Keane et al.,
2004). In Mediterranean forest landscapes, efforts to develop Indi-
vidual-Based Models (IBMs) of vegetation dynamics (representing
the establishment, growth and senescence of individual organisms)
are confronted by several problems. These problems are primarily
related to the morphological and behavioural characteristics of
Mediterranean-type species. For instance, Pausas (1999a) suggests
that the use of the same allometric equations for all species is not
acceptable in Mediterranean-type vegetation, whereas it may be for
models representing temperate regions. Furthermore, it is often
difficult to establish the growth rates or life span of Mediterranean-
type vegetation species (Pausas, 1999a; Mouillot et al., 2001). Growth
rates often vary in time according to resource availability (especially
due to water availability and temperature) and it is difficult to
establish these rates empirically (e.g., from tree rings) in Mediterra-
nean-type species (Pausas, 1999a). Root networks of species that
resprout following disturbance may be hundreds of years old while
the above-ground vegetation appears in a juvenile state (Grove and
Rackham, 2001). Underground structures further impede the use of
IBMs in these regions, as it is difficult to estimate parameters for
underground growth and competition (Pausas, 1999a).

The use of Plant-Functional Types (PFTs) overcomes many of these
problems and enables systematic analysis of ecosystem function and
sensitivity to environmental change (McIntyre and Hobbs,1999). PFTs
classify plants by common responses to environmental conditions in
terms of growth, reproduction strategies and resource competition,
thereby providing a simplified representation of numerous plant
species within an ecosystem (McIntyre and Hobbs,1999; Rusch et al.,
2003). Using PFTs to simulate coarse land-cover classes reduces
model complexity compared with an individual-based approach, but
allows realistic representation of plant competition, growth and
response to disturbance. The obligate seeder and resprouter PFTs have
been widely used to describe the life-history strategies adopted by
Mediterranean-type vegetation to survive in the face of frequent
disturbance (e.g., Keeley and Zedler,1978; Barbero et al.,1990; Enright
et al., 1998a,b). Resprouters (e.g., Quercus ilex) rely on large under-
ground biomass stores (lignotubers) and root systems or protection of
above-ground biomass to survive disturbance and resprout vegeta-
tively (Enright et al., 1998b; Bellingham and Sparrow, 2000). Obligate
seeders (e.g., Pinus pinea and Pinus pinaster) die in the event of
disturbance but populations are maintained by rapid recolonisation
of a disturbed area from seeds in the canopy (Enright et al., 1998a;
Tapias et al., 2004).

2.3. Representation of wildfire in landscape fire-succession models

The wildfire ‘regime’ is the frequency, timing, and burned area of
all fires in a region (Whelan, 1995). Most previous LFSMs have taken
a stochastic approach to represent fire ignition, igniting fires in
each time step as a function of probability distribution functions
parameterised by empirical data (Keane et al., 2004). Once alight,
the burned area of a fire is related to the subsequent spread of that
fire. Fire-shape and Cellular Automata (CA) approaches have been
used previously to represent fire spread in LFSMs. Given an ignition
location, wind direction and speed it is possible to reasonably
estimate the size and shape of a wildfire from a set of fire-shape
templates, the most commonly used being the ellipse (e.g.,
Anderson et al., 1982; Catchpole et al., 1992). However, these fire-
shape models often assume fire spread across uniform fuel,
topography and microclimatic conditions, variation in any of which
will cause variation in rate and direction of spread. This is a major
drawback in spatially heterogeneous landscapes. To overcome
these problems the CA approach considers the landscape as a grid
of finite cells, each of which is assumed to have a uniform internal
state. Each cell may possess several attributes, which may be
constant (e.g., slope) or dynamic (e.g., fuel load). The probability of
fire spreading between cells is then dependent on these attributes.

2.4. Previous Mediterranean landscape fire-succession models

Spatially explicit modelling of vegetation and fire dynamics at the
landscape level has a short history in Mediterranean-type ecosys-
tems (Zavala et al., 2000). Early models used PFTs to examine
Mediterranean-type vegetation-dynamics non-spatially (e.g., Pau-
sas, 1999b). Several attempts have been made to model Mediterra-
nean-type vegetation-dynamics spatially, with varying degrees of
mechanistic representation. The process-based SImulator for medi-
tERRnean landscApes (SIERRA Mouillot et al., 2001, 2002) was
developed to examine the interaction(s) between vegetation-
dynamics and fire regimes for landscapes with Mediterranean-type
vegetation communities. Taking a PFT approach, with stands of
vegetation on a 30-m resolution grid, SIERRA represents spatial
heterogeneity in landscape patterns and processes. Seed dispersal,
surface water flow and fire spread are simulated spatially, with the
assumption that water availability and solar radiation are critical
constraints on vegetation productivity and competition. Fire is rep-
resented using a fire-shape approach. A large number of parameters
are needed to drive this physiological, mechanistic model that uses
numerous equations to simulate processes such as infiltration, root
water uptake and net primary production. Consequently, the high
data demands of this approach limit the widespread application of
such a model.



Table 1
Land-cover classes considered in the model. Potential transitions (direction indi-
cated by /) between land-cover classes are shown with the duration over which
they occur. Land-cover flammability values are used to simulate wildfire spread (LCF
in Eq. (8)).

Class Land-Cover Description Class Change

1 Pine Primarily Pinus pinea and Pinus pinaster /2; 15–40 yr
/3; 20 yr

2 Transition Forest Mixed Pinus, Quercus and
Juniperus species

/1; 20–30 yr
/3; 20–25 yr
/4; 20–50 yr

3 Deciduous Primarily chestnut (Castanea sativa),
oak (Quercus pyrenaica) and alder
(Alnus glutinosa) but also
Populus species

/1; 20–30 yr
/2; 30–40 yr

4 Oak Predominantly Quercus ilex /2; 30 yr
5 Shrubland Cistus, Lavandula and Genista species

with juvenile Pinus and Quercus in
shrub state

/1; 10–15 yr
/2; 15 yr
/3; 15–20 yr
/4; 30–50 yr

6 Water/Quarry River, reservoir or open stone quarry Unchanging
7 Burnt Post-fire condition of states 1–5 /5; 3 yr
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Other recent spatially explicit but less mechanistic (and there-
fore less data-demanding) models of Mediterranean-type vegeta-
tion-dynamics have been developed by Pausas (1999a, 2003, 2006)
and Zavala and Zea (2004). These models are largely abstract and
independent of specific study areas. For example, Pausas (1999b,
2006) has developed abstract CA models of Mediterranean forest
succession and disturbance that consider PFTs and disturbance
regime characteristics. The spatially explicit FATELAND model
(Pausas, 2006) represents species competition in grid cells as
a function of their life-history characteristics and the fire regime.
Use of FATELAND suggested that not only do species respond
differentially to altered fire regimes, but that the nature of their
response varies with landscape pattern. Using a similar approach,
Zavala and Zea (2004) examined the spatial dynamics of two PFTs
(oak ‘resprouters’ and pine ‘seeders’), varying soil moisture and
disturbance occurrence across a hypothetical landscape. They
found that the spatial distribution of soil-moisture and the pres-
ence/absence of disturbance influenced both the spatial distribu-
tion of species and the temporal variation in size of the modelled
populations. Most recently, Syphard et al. (2007) modified the
LANDIS model for application in southern California. They found
that the model was able to reproduce expected responses of
‘seeder’ and ‘resprouter’ PFTs to variation in fire return intervals.

Models such as FATELAND are not direct representations of
specific landscapes or study areas but they do bridge the gap between
highly abstract succession-disturbance models and the mechanistic
site-specific simulation models that are highly demanding in both
data and computational resources (Millington et al., 2006; Perry and
Millington, 2008). Finding the appropriate level of representation
remains an important issue for ecological modellers (Perry, 2009).
Furthermore, the major disturbance agent in this region, human
activity, is conspicuously absent from the discussion above and from
previous LFSMs constructed for the Mediterranean region. The model
presented here is the ecological component of a wider modelling
project that aims to represent human activity explicitly in a LFSM.
Consequently, a PFT approach that considers coarse land-cover
classes is most appropriate for our purposes.

3. Methods

3.1. Study area

Our model was developed using data for EU Special Protection Area number 56,
‘Encinares del rı́o Alberche y Cofio’ (SPA 56) in central Spain near Madrid. SPA 56
covers approximately 83,000 ha (830 km2) on the southern slopes and foothills of the
Sierra de Guadarrama (altitudinal range 600–1300 m a.s.l). The region is characterized
by a Mediterranean-type climate (mean annual rainfall 700 mm and mean daytime
temperature 19 �C) and flora (dominated by Pinus and Quercus species). Romero-
Calcerrada and Perry (2004) and Millington et al. (2007) describe SPA 56 and data
available for the construction of this model. In this paper we present initial results for
the entire area, but focus our detailed analyses on a representative sub-section of SPA
56 covering approximately 20,000 ha (200 km2, outlined on year 25 in Fig. 5).

3.2. Vegetation state-and-transition model

To represent vegetation dynamics our LFSM adopts an approach similar to the
Rule-Based Community-Level Modelling (RBCLM) system developed by McIntosh
(2003) and McIntosh et al. (2003). The RBCLM system was developed for vegetation
modelling with qualitative knowledge, where quantitative data for model param-
eterisation are lacking. Changes in categorical state variables such as land-cover
classes are represented by rules based on a qualitative understanding that links state
variables and environmental descriptors. The key attributes of vegetation change
addressed by the RBCLM approach are (McIntosh, 2003):

1. direction of transition between land-cover classes
2. rate of transition between these land-cover classes.

Considering vegetation change at a categorical level in this way allows qualitative
understanding of vegetation dynamics to be translated into a formal, spatial model at
the landscape level. Our LFSM adopts this approach, with rules for change based on
the behaviour of seven land-cover classes (Table 1) and their interaction with key
environmental resource constraints (water and light availability) and disturbance (fire
and agriculture). These land-cover classes consist of two dominant vegetation types
that have distinct life-history traits and reproductive strategies (pine and oak), three
mixed land-cover types (transition forest, deciduous and shrubland), and two non-
vegetated land covers (water/quarry and a ‘burnt’ land-cover class).

The ‘pine’ land cover is dominated by P. pinea and P. pinaster. The ‘oak’ land cover is
predominantly Q. ilex. These classes are considered as ‘seeder’ and ‘resprouter’ PFTs
respectively. All species in each of these classes are assumed to belong to the same PFT
(i.e., all have the same life-history traits and functional responses to environmental
resources and disturbances). The ‘transition forest’ land-cover does not represent
a single species, rather it encompasses the mixed state between an idealised pine–oak
transition and other mixed land-cover conditions (i.e., mixed pine-deciduous forest).
The deciduous forest land cover is also composed of mixed species (Table 1), and is
found in the relatively cooler, more moist areas of the study area. Deciduous species
(e.g., Castanea sativa) in SPA 56 exhibit both resprouter and obligate seeder responses
to fire and are represented as a combination of these functional types (by considering
different ‘successional trajectories’ – see below). If burnt, all land-cover classes become
shrubland soon after burning. Unlike the other vegetation land-covers, the shrubland
class can transit directly to all other vegetation land-covers.

These coarse classes of vegetation (Classes 1–5, Table 1) are appropriate for the
30 m spatial resolution of the lattice that represents the landscape. Temporal
resolution of the model is one year (Fig. 1). For each pixel, at each simulated year,
a rule-set defines a direction of transition and the duration over which this transi-
tion will take to occur. Specifically, four pixel-variables are considered in this process
(McIntosh et al., 2003):

1. Class, C: current land-cover class (as defined in Table 1, Classes 1–7)
2. Total time in class, Tin: length of time [yr] pixel has been in current class C at

present time t (C(t))
3. Direction of transition, DD: the resulting class of a pixel on completion of its

current transition trajectory, as a function of C(t) and environmental conditions
4. Total time required to complete transition, DT [yr]: a function of DD and envi-

ronmental conditions.

Values for Tin, are derived from a set of logical statements:

� IF CðtÞsCðt � 1Þ THEN TinðtÞ ¼ 1 Statement 1

� IF CðtÞ ¼ Cðt � 1Þ AND DDðtÞ ¼ DDðt � 1Þ THEN TinðtÞ ¼ Tinðt � 1Þ þ 1

Statement 2

� IF CðtÞ ¼ Cðt � 1Þ AND DDðtÞsDDðt � 1Þ THEN TinðtÞ ¼ 1 Statement 3

To derive DD and DT, the set of pixel physical attributes is compared to a look-up
table (see online supplementary material) in which a value for DD and DT for every
possible combination of pixel physical attributes, is listed.



Fig. 1. Schematic diagram of the model. Starting from the top of the diagram, this
process is iterated for as many annual time-steps as required.
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Values for DT represent the duration for a transition of type DD to occur given
a pixel’s physical attributes. Values for DD and DT will vary if a pixel’s attributes
change, however. Specifically, these values will vary depending upon seed, light and
water availability (as discussed below). For example, if a seed source becomes
available that was not present previously, the transition may change toward the
vegetation represented by the seed source (e.g., transition from shrubland to pine
may change to transition from shrubland to deciduous if seeds become available for
the latter and conditions are hydric, Fig. 2). Because DT is dependent on both DD and
pixel physical attributes however, a rule is required for the situation in which DD
changes before a transition has successfully been completed:

� IF DDðtÞsDDðt � 1Þ AND CðtÞ ¼ Cðt � 1Þ THEN DT ¼ ½DTðt � 1Þ þ DTðtÞ�=2

Statement 4

where DT(t) is newly established for time t. Finally, at each time step, rules are
checked to establish whether a state transition occurs:
� IF TinðtÞ � DTðtÞ THEN Cðt þ 1Þ ¼ DD Statement 5

� IF TinðtÞ < DTðtÞ THEN Cðt þ 1Þ ¼ CðtÞ Statement 6

Vegetation age is monitored for each pixel to determine whether reproductive
maturity has been achieved. Oak vegetation is assumed to reach reproductive

maturity at 15 years, and pine and deciduous at 12 years (Pausas, 1999b). If vege-
tation is immature, resprouter material or seeds will not be present in the pixel
unless dispersed from another source of mature vegetation via seed dispersal
(Section 3.3). For each simulated year, pixels are classified as either being on
a ‘regeneration’ or ‘secondary’ (‘old-field’) succession pathway (Fig. 2). Regeneration
succession occurs where mature resprouter vegetation is present. Secondary
succession occurs where mature resprouter vegetation is not present. A pixel will
switch from secondary to regeneration succession when reprouter vegetation
becomes mature. Mature resprouter vegetation is assumed to survive burning, while
(obligate) seeder species of all ages die (their seeds surviving if they were mature).
However, if burning is particularly frequent resprouters will not survive (Zavala
et al., 2000) and a pixel will switch from regeneration succession to secondary
succession (Fig. 2). Thus, the succession pathway that a pixel is following depends
upon the type of vegetation present and whether it is reproductively mature.

Our model does not consider the intensity of burning (e.g., ground fire versus
crown fire) and simply assumes that all fires are stand-replacing (all burned pixels
are reset to the ‘burnt’ state). This assumption is suitable given the coarse land-cover
classes considered (Pausas, 1999b). Fire return times to each pixel are used to assess
the survival of resprouter vegetation following disturbance. Probability of mortality
due to fire has an inverse relationship with organism biomass and trunk diameter
(Moreno and Oechel, 1993; Pausas, 1997; Hodgkinson, 1998). As vegetation biomass
is not considered here, age is used as a proxy for biomass, with biomass increasing
with age until a maximum. Thus, mortality occurs if:

mf > Age=OM; for Age < 100 Statement 7a

mf > 100=OM; for Age � 100 Statement 7b

where mf is fire frequency (fires yr�1) and mortality-scaling parameter OM¼ 200
(yr2 fire�1). This value for OM is based on qualitative understanding as insufficient
data have prevented empirical studies from quantitatively establishing the distur-
bance frequency causing mortality (Trabaud and Galtie, 1996). We assume that at an
age of 100 years the relationship between vegetation biomass and age becomes
weak enough to be considered constant (i.e., the tree is assumed to be fully grown).

3.3. Seed dispersal

Key to the accurate representation of seed-dispersal dynamics is selection of
appropriate seed-dispersal kernels to represent vegetation types and species
(Greene et al., 2004; Jongejans et al., 2008). Pons and Pausas (2007) found that the
lognormal distribution best described the distance distribution of acorns from
Quercus species by birds in Spain. We use the lognormal distribution (mean of
46.7 m, stand deviation of 2.34, Pons and Pausas, 2007) to model the probability of
acorn presence in a non-oak pixel:

P ¼ 1

xs
ffiffiffiffiffiffi
2p
p exp

"
� ðlnðxÞ � mÞ2

2s2

#
(1)

where x is the distance (m) to the nearest pixel containing mature oak vegetation.
Pons and Pausas (2007) found a maximum acorn dispersal distance (Oak MD) of
545.4 m. To speed simulation time, for x> 550 m we assume the probability of acorn
presence to be 0.001. We use an exponential distribution to model seed dispersal
from vegetation types for which wind is the primary dispersal mechanism (i.e., pine
and deciduous types):

P ¼ e
�b$

�
x

MD

�
(2)

where x is the distance (m) to nearest seed source (i.e., pixel containing mature pine
or deciduous vegetation) and MD> x> ED, MD is the maximum seeding distance
and the distance-decrease parameter b¼ 5. The exponential distribution has been
used to model seed dispersal for these vegetation types in previous models (Pausas,
2006; Syphard et al., 2007). We assume MD¼ 100 m and ED¼ 75 m, consistent with
these previous models. For x� ED we assume the probability of a pixel containing
seeds for germination that year is 0.95 and for x>MD we assume a probability of
0.001. We use a ‘Quad-Tree’ data structure (Govindarajan et al., 2004) to facilitate
efficient computation of seed probabilities for each pixel in the landscape.

At model initialization the three land-cover maps available for the study area (for
1984,1991 and 1999, see Romero-Calcerrada and Perry, 2002; Millington et al., 2007)
are used to assign initial seed locations and vegetation ages (using the rules specified
in Table 2). As the original land-cover maps do not specify the mature vegetation
types present in each transition forest pixel, transition forest in the initial land-cover
map is assumed to contain all seed sources (as transition forest must contain at least



a b

Fig. 2. Succession pathways used in the vegetation-dynamics model for a) secondary succession and b) regeneration succession. Directions and rates of transition are shown for various
environmental conditions. Succession pathways may be modified from the default pathway (at top) by changes in environmental conditions (dashed arrows). Potential ‘climax’
vegetation covers (i.e., final cover given the current environmental conditions) are highlighted by boxes around their respective labels. Disturbance by fire (dotted arrows) converts land
cover to the burnt state. Frequent fire (see Statement 7) results in secondary succession. Predominant pathways are shown; for all pathways see supporting online material.
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one mature species by definition). Transition Forest that subsequently appears in the
simulated landscape is assumed to contain only those seed sources for the mature
vegetation types that are known to be present (via simulation). Initial shrubland
pixels are assumed to contain no seed sources, as original land-cover maps do not
specify vegetation types present, and shrubland does not necessarily contain any
mature vegetation. Shrubland that subsequently appears in the landscape may
contain mature oak vegetation that has survived previous burning.
3.4. Soil moisture

Soil-moisture availability (SM, mm) in a pixel is calculated as a function of total
volume of incoming precipitation and overland flow and outgoing overland flow per
time step:

SM ¼ P þ Ri � Ro (3)

where P is precipitation, Ri is incoming overland flow and Ro is outgoing overland flow
(all in units of mm). The Soil Conservation Service Curve Number (SCS-CN) method
(SCS, 1985) is a commonly used method for calculating overland flow in agricultural,
Table 2
Rules to establish initial age of the four forest land-cover classes. LC denotes any one
of pine, deciduous or oak land-cover (Classes 1, 3, 4, Table 1). Transition forest is
land-cover Class 2. If the rule is satisfied the corresponding initial age of the given
land-cover is assigned at model initialization.

Rule Age of LC (yr)

IF 1984 AND 1991 AND 1999¼ LC 16
IF 1984 AND 1991¼ LC AND 1999 s LC 8
IF 1999 AND 1991 s LC 1
IF 1999¼ Transition Forest 1
IF 1999 s LC AND 1999 s Transition Forest 0
forest and urban watersheds. The SCS-CN approach has relatively low data and
parameterisation requirements and is used here in preference to other more mech-
anistically detailed (and data-demanding) approaches. This method calculates the
total volume of overland flow per time step (R, whether incoming or outgoing) as:

R ¼ ðP � 0:02SÞ2

ðP þ 0:08SÞ (4)

where the ‘initial abstraction rate’ S is given by:

S ¼ 2:54
�

1000
CN

� 10
�

(5)

and where CN is a curve number (dimensionless). The curve number is a function of
vegetation, slope and soil type. Curve numbers have been calculated for numerous
vegetation and soil types and the values used in the LFSM are presented in Appendix 1.

To apply this method spatially a flow-routing algorithm is used to distribute
moisture around the landscape as a function of its topography. The RUNOFF function
in IDRISI (Jenson and Domingue, 1988; Clark Labs, 2004) is used to produce a flow-
routing map. As soil erosion and other geomorphologic processes are not considered
in the model, the flow-routing map is assumed to be static. Moisture availability is
classified into three classes (xeric� 500 mm, 500 mm<mesic� 1000 mm, and
hydric> 1000 mm), consistent with those used in previous similar models (e.g.,
Zavala and Zea, 2004; Zavala and Bravo de la Parra, 2005).
3.5. Solar radiation

The availability of solar radiation is modelled as a function of the aspect of
a pixel, with south-facing slopes receiving greater insolation than north-facing
slopes annually. This situation is reflected in the transitions look-up table (online
material), with deciduous vegetation favouring north-facing slopes, and pine
vegetation favouring south-facing slopes. The shade-tolerance of evergreen oak and
its preference to establish in the understorey of other species are reflected in the
conceptualisation of the landscape successional dynamics (Fig. 2).



Table 4
Fuel-Moisture Risk. Classification of FMR values (dimensionless) used in Eq. (8).

Moisture Class FMR

moisture< 0.2 0.8
0.2�moisture< 0.3 0.9
0.3�moisture< 0.5 1.0
0.5�moisture< 0.6 1.1
Moisture� 0.6 1.2
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3.6. Wildfire model

Our LFSM represents the wildfire regime by integrating a cellular-automata (CA)
model of fire spread with the vegetation-dynamics model described above. The
coarse representation of vegetation in the model precludes the use of a detailed fire
behaviour model (e.g., BEHAVE Burgan and Rothermel, 1984; Andrews, 1986).
Constructing the model using a CA-type approach allows direct integration with the
vegetation-dynamics component of the model and also allows the consideration of
how environmental variables such as topography and climate influence spread.

We use the Poisson distribution to generate the number of individual wildfire
events during each model time step. The number of fires per year in northeast Spain
was found to follow a Poisson process for 1975–1998 (Diaz-Delgado et al., 2004).
Using the Poisson distribution, the probability p of the occurrence of exactly x events
during a specified time interval is given by:

pðxÞ ¼ e�llx

x!
(6)

where l is the shape parameter (i.e., mean occurrence for the time interval speci-
fied). The parameter l is estimated in our model by:

l ¼ m�MAT
MAP

(7)

where MAT is mean annual temperature (�C), MAP is mean annual precipitation
(mm) and climate ignition scaling parameter m¼ 12. Short-term (i.e., daily, weekly)
climatic conditions are known to influence wildfire ignition risk more than mean
annual conditions and are used by several major wildfire risk models (e.g., the US
NFDRS, Deeming et al., 1977; Burgan, 1988). However, our model assumes that
changes in mean annual conditions correspond with changes in intra-annual
conditions. For example, De Luis et al. (2000, 2001) found that decreases in mean
annual precipitation correspond with increases in the number/intensity of intra-
annual drought periods in Spain, and suggested it was one factor causing observed
increases in frequency in the region recently. The value for parameter m was esti-
mated by comparing observed fire frequencies (6.0 fire yr�1) with observed
temperature and precipitation data for SPA 56 for 1989–2000. Fires ignite at random
locations in all analyses considered in this paper.

In our CA model, fire may spread into any of a burning cell’s eight neighbouring
cells that contain a flammable land-cover (i.e., all land-cover classes except water/
quarry and burnt – see supplementary online material for a movie illustrating fire
spread in the model). The probability of fire spreading into an adjacent cell is
calculated as a function of the vegetation flammability probability, modified by slope
and climate conditions:

P ¼ LCF$SR$FMR$W (8)

where LCF is land-cover flammability, SR is slope risk, FMR is fuel-moisture risk, and
W is wind risk. A uniform random deviate in the interval [0, 1] is compared with this
probability to determine if spread occurs. The flammabilities of land-cover classes
(LCF in Eq. (8), default values in Table 6) are interpreted as the probability of a cell
with the given land-cover being ignited by a burning adjacent cell on flat ground
(between�5% and 5% slope, negative values represent movement downslope), with
vegetation moisture in the range 0.5–0.6, and no wind. Wildfire is known to spread
preferentially upslope due to flame height and vertical heat convection effects
(Viegas, 1998). Categories of slope (%) are classified into risk classes (SR in Eq. (8))
following Perry and Enright (2002, Table 3).

Alongside vegetation type, fuel-moisture content (especially in fine fuel, such as
small branches and leaves) is an important determinant of flammability, and is
considered in many fire danger rating systems (e.g., the US NFDRS) and fire simu-
lation models (e.g., BEHAVE). Vegetation moisture is considered here by classifying
cell values derived from Eq. (7) into five classes and assigning appropriate multi-
pliers (FMR in Eq. (8), Table 4). Wind data for the study area are not available, so
conditions (direction and strength) are generated at random for each simulated fire.
Three possible wind strength classes are simulated (W in Eq. (8), Fig. 3) based on the
results of similar models of wildfire spread (Karafyllidis et al., 1997; Perry and
Enright, 2002).
Table 3
Slope Risk. Classification of SR values (dimensionless) used in Eq. (8).

Slope (%) SR

slope<�25 0.80
�25� slope<�15 0.90
�15� slope<�5 0.95
�5� slope< 5 1.00
5� slope< 15 1.05
15� slope< 25 1.10
slope� 25 1.20
3.7. Model calibration

Parameter values have been derived from several sources: (i) literature on
vegetation change in forest ecosystems in the western Mediterranean Basin (e.g.,
Barbero et al. (1990)); (ii) previous landscape fire-succession models (e.g., Perry and
Enright, 2002; Pausas, 2006; Syphard et al., 2007); (iii) anecdotal evidence collected
from other sources (e.g., Grove and Rackham, 2001); (iv) knowledge of the study
region and its dynamics gathered from ‘experts’ (i.e., scientists, forestry managers
etc. in a similar fashion to that used by McIntosh et al., 2003).

Parameters influencing the wildfire model are calibrated to reproduce charac-
teristics of the observed SPA 56 wildfire regime. To establish suitable parameter
values, an appropriate measure to characterise wildfire regimes is required. From
a wide number of possible heavy tailed frequency-area distributions (e.g., Schoen-
berg et al., 2003) the power-law distribution is the most parsimonious model
(Millington et al., 2006). This distribution has also been found to be an accurate
descriptor of wildfire regimes for events over a large range of orders of magnitude
and across many ecosystems (Malamud et al., 1998; Ricotta et al., 1999, 2001; Song
et al., 2001). Power-law distributions follow:

f ðAÞwA�b (9)

where f(A) is the frequency of fires with size A and scaling constant b. It has been
suggested previously that the distribution, and the use of the exponent b, is an
efficient and effective measure for comparing wildfire regimes if frequency densities
normalised by the temporal and spatial extents of the data set are used (Malamud
et al., 2005; Millington et al., 2006). The scaling exponent b is a measure of the
number of small versus medium versus large fires. Larger b values indicate ‘large’
fires are rarer relative to smaller fires, and vice versa. We tested multiple combi-
nations of LCF values (ten 250-year model replicates for each set) and compared the
resulting b value with b values for empirical wildfire data.
3.8. Sensitivity analysis

We use sensitivity analysis to verify that the model behaves as expected and to
assess how the model’s dynamics are affected by parameter uncertainty. We use
simple univariate and incomplete multivariate permutation sensitivity analyses to
test our model. For univariate analyses each input parameter is varied by	10% of its
‘default’ value, while all other parameters are held at their default value (Table 5). A
complete multivariate permutation analysis examines the result of holding each
input parameter at its default value while varying all other parameters (	10%). We
use an incomplete test that holds the default values of associated input parameters
(e.g., all those controlling soil moisture, those controlling seed dispersal, etc.), while
varying all other parameters. An incomplete test reduces the number of simulations
required but allows the interpretation of the influence and interaction of different
components of the model. To understand the influence of each parameter (set) we
Fig. 3. Fire Risk as a function of wind strength and direction. Classification of values
used in Eq. (8).
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examine the proportional change in the state variable for a given change in the
parameter(s) in question.

We consider two state variables, one that measures land-cover composition and
a second that reflects the wildfire regime. To examine land-cover composition we
consider the proportion of landscape in the shrubland land-cover class after 250
simulated years. This measure represents (in the model at least) the initial ‘coloniser’
vegetation, appearing immediately following disturbance, and thus gives an indi-
cation of the ‘immaturity’ of the landscape. Other landscape measures (e.g., the
number of vegetation patches and Shannon’s index of diversity for vegetation
classes) are strongly correlated with the abundance of shrubland. To examine
changes in the wildfire regime we examine the wildfire power-law frequency-area
scaling exponent b (as described above in Section 3.7). Ten model repetitions are
made for each parameter set (Table 5), and the mean proportion of the landscape
occupied by shrubland is compared with the value for the base parameter set. We
use a t-test to assess if the land-cover composition for each set of model repetitions
is statistically significantly different from the default parameter set. Fires from the
ten repetitions are combined to form a single data set for wildfire-regime analyses.
Malamud et al. (2005) suggest that b values for datasets with less than 100 fires
should be treated cautiously. Combining results from the 10 runs ensures sufficient
data points to produce robust estimates of the 95% confidence limit for b. Conse-
quently, we are unable to test for significant differences between b in sensitivity
analyses. Two other state variables are used to characterise the simulated wildfire
regimes (Eq. (6)): largest burned area for a single event and total burned area for the
duration of simulation replicates. Mean fire size is not considered as a state variable
because the power-law distribution does not have any defined moments (where the
first moment is the ‘average’).

4. Results

4.1. Model calibration

Using parameter values specified in Table 5 (also see Appendix 1
and online supplementary material), output from the vegetation
state-and-transition model (in an absence of disturbance) shows
Table 5
Sensitivity Analysis Results. Default parameter values are shown with the corresponding	
are shown for each univariate and multivariate analysis for two state variables; mean
(Shrubland) and wildfire frequency-area power-law distribution exponent b (Wildfire b, se
results for default parameters (0.026). Values in brackets for shrubland are percentage cha
greater than 15%. Wildfire b results are for all fires from the 10 simulation replicates. Va

Parameter Value Value (þ10%)

Univariate Analyses
Xeric Soil Moisture Class

(mm, Eq. (3))
500 550

Hydric Soil Moisture
Class (mm, Eq. (3))

1000 1100

Land-Cover Flammability
(probability, Eq. (8))

0.23, 0.23, 0.22, 0.24, 0.22 0.253, 0.253, 0.242,
0.264, 0.242

Slope Risk
(dimensionless, Eq.
(8))

0.80, 0.90, 0.95, 1.00, 1.05, 1.10, 1.20 0.880, 0.990, 1.045,
1.100, 1.155, 1.210,
1.320

Fuel-Moisture Risk
(dimensionless, Eq.
(8))

0.8, 0.9, 1.0, 1.1, 1.2 0.88, 0.99, 1.10, 1.21,
1.32

Climate Ignition Scaling,
m (dimensionless, Eq.
(7))

12 14

Oak Mortality, OM
(yr2 fire�1, Statement
7)

200 220

Oak MD (m, Eq. (1)) 500 550
Oak Mean (m, Eq. (1)) 46.7 51.37
Oak SD (m, Eq. (1)) 2.34 2.574
Wind ED (m, Eq. (2)) 75 82.5

Multivariate Analysis
Wind MD (m, Eq. (2)) 100 110
Moisture (Eq. (3)) Xeric & Hydric Soil Moisture 550, 1100
Vegetation (Eq. (8)) Land-Cover Flammability, Slope, Fuel

Moisture, Climate Ignition & Oak
Mortality

Values as above

Oak (Eq. (1)) Oak MD, Mean & SD 550, 51.37, 2.574
Wind (Eq. (2)) Wind ED & MD 82.5, 110
model behaviour consistent with the basic model construction
(Figs. 4 and 5). From an initial landscape dominated by shrubland
(all human land uses initially replaced with shrubland), succession-
type changes shift landscape composition toward the hypothetical
evergreen oak climax (Fig. 4). Spatially, deciduous species are found
in the bottoms of river valleys and pine forest tends to be found in
drier, more exposed areas (Fig. 5).

Millington et al. (2006) showed that the b values for all studies
using the power-law distribution to describe empirical wildfire
regimes fell in the range 1.1–2.2. Malamud et al. (2005) found
b values for fires on United States Forestry Service (USFS) during
1970–2000 for Bailey’s (1995) Mediterranean and Mediterranean
Mountains ecoregions were 1.30 and 1.46, respectively. Ricotta et al.
(2001) found that fire regimes for regions of Spain between 1974
and 1999 fell in the range 1.1–1.5. Combined results for ten 250-
year model replicates with default LCF values (Table 6) produce
b¼ 1.32	 0.09 (95% confidence interval, Fig. 6a). These values are
consistent with the range of empirical values found by Malamud
et al. (2005) and Ricotta et al. (2001). The poisson probability
distribution (Eq. (6)) using climate ignition scaling parameter
m¼ 12 (Eq. (7)) results in zero, one or two fires per year for an
example 250-year replicate with default LCF values (Fig. 7).
4.2. Sensitivity analysis

Sensitivity analysis suggests that (i) increases in parameter values
cause greater changes in the state variable than decreases, and (ii)
that the most sensitive parameters are related to wildfire spread and
soil moisture (Table 5). Parameters for seed dispersal have limited
10% values used in analyses. Multivariate permutations are shown at bottom. Results
final proportion of the landscape in shrubland cover for 10 simulation replicates
e Eq. (9)). Asterisks denote shrubland proportions that are statistically different from
nge relative to the default results. Results in bold indicate a change in shrubland area
lues in brackets for Wildfire b values are 95% confidence intervals.

Value (�10%) Shrubland
(þ10%)

Shrubland
(�10%)

Wildfire
b (þ10%)

Wildfire
b (�10%)

450 0.038* (46%) 0.012*(L55%) 1.31 (	0.10) 1.33 (	0.09)

900 0.019* (L28%) 0.036* (35%) 1.34 (	0.09) 1.30 (	0.09)

0.207, 0.207, 0.198,
0.216, 0.198

0.063* (142%) 0.021 (L21%) 1.17 (	0.04) 1.45 (	0.13)

0.720, 0.810, 0.855,
0.900, 0.945, 0.990,
1.080

0.090* (244%) 0.022 (L16%) 1.14 (	0.04) 1.42 (	0.12)

0.72, 0.81, 0.90, 0.99,
1.08

0.091* (248%) 0.020* (L24%) 1.18 (	0.04) 1.40 (	0.14)

10 0.025 (�4%) 0.024 (�10%) 1.37 (	0.09) 1.30 (	0.08)

180 0.024 (�7%) 0.029 (12%) 1.34 (	0.09) 1.34 (	0.09)

450 0.023 (�12%) 0.025 (�4%) 1.33 (	0.09) 1.36 (	0.09)
42.03 0.024 (�9%) 0.027 (3%) 1.35 (	0.09) 1.34 (	0.08)
2.106 0.024 (�9%) 0.023 (�11%) 1.29 (	0.10) 1.33 (	0.09)
67.5 0.024 (�8%) 0.026 (0%) 1.29 (	0.09) 1.31 (	0.08)

90 0.024 (�8%) 0.023 (�12%) 1.33 (	0.09) 1.28 (	0.10)
450, 900 0.042* (61%) 0.024 (�7%) 1.29 (	0.09) 1.32 (	0.09)
Values as above 0.611* (2231%) 0.018* (33%) 0.98 (	0.12) 1.66 (	0.22)

450, 42.03, 2.106 0.025 (�6%) 0.024 (�9%) 1.35 (	0.10) 1.37 (	0.09)
67.5, 90 0.028 (8%) 0.018* (L30%) 1.32 (	0.08) 1.33 (	0.08)
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Fig. 4. Time series of landscape land-cover composition from the vegetation-dynamics model. This result is for a single ‘no disturbance’ model run and demonstrates the conceptual
model of succession toward different ‘climax’ vegetation covers dependent on environmental conditions and seed availability (Fig. 2). Units on the x axis are in years from the start
of the model run.
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effects on the state variables. Individual parameters (univariate
analysis) with statistically significant effects on land-cover compo-
sition are xeric and hydric soil-moisture classes, land-cover flam-
mability (increase only), slope risk (increase only), and fuel-moisture
risk. Multivariate permutation analyses show that land-cover
composition is sensitive to moisture parameters (increase only),
vegetation parameters, and wind seed dispersal (decrease only).
Increases in all vegetation parameters (multivariate analysis) have
by far the largest effect on land-cover composition, causing an order
of magnitude greater proportional increase in shrubland cover.

Only three individual parameters in the univariate analysis
cause noticeable changes in b values (relative to 95% confidence
limits). These parameters are all controls on modelled wildfire
spread: vegetation flammability, slope risk, and fuel-moisture risk.
Other parameters with significant effects on land-cover composi-
tion (e.g., soil-moisture classes) do not produce changes in b. The
only parameter set to cause large changes in b values in the
multivariate analysis is the vegetation parameter set. However,
changes in these parameters also result in weaker power-law
relationships between wildfire frequency and area (r2 values, not
shown, decrease with corresponding increases in 95% error limits).
In the case of increases in vegetation parameters the power-law
relationship collapses at large fire sizes (Fig. 6b).

A strong negative relationship between total flammability and
values of b is evident (Fig. 8). This relationship indicates that as total
land-cover flammability decreases, large fires become rarer relative
to smaller fires. This behaviour is also indicated by trends in
maximum fire size and mean total burned area, which increase
with total flammability (Table 6). An increase in the frequency of
fires with large area is not unexpected and highlights that while the
frequency-area relationship remains a power-law, its exponent
b value changes markedly.

5. Discussion and conclusions

5.1. Sensitivity analysis

The sensitivity analyses indicate several model parameters have
a significant influence on land-cover change. Using two state
variables, one a measure of land-cover composition and the second
a measure of the wildfire regime (the frequency-area power-law
distribution exponent, b), we are able to examine which aspects of
the model these parameters influence. Parameters controlling soil
moisture have a significant effect on land-cover composition (with
greater proportional changes in the state variable than the
parameter) but had limited influence on b values (Table 5). This
behaviour indicates that these variables influence land-cover
composition via vegetation succession processes rather than
wildfire, and is consistent with the structure of the model and
conceptualisation of succession trajectories and vegetation change
(Fig. 2). The multivariate permutation analysis for moisture
parameters caused significant change in land-cover composition in
one direction (Table 5). Moisture gradients are known to be an
important control on vegetation dynamics in Mediterranean envi-
ronments (Zavala et al., 2000) and have been found to explain
landscape patterns of resprouting better than disturbance
frequency models (Clarke et al., 2005). Although LFSMs for Medi-
terranean environments have examined the effects of seed
dispersal (Pausas, 1999b; Syphard et al., 2007), spatial patterns of
vegetation types (Pausas, 2003, 2006) and fire return interval
(Pausas, 2006; Syphard et al., 2007) on landscape dynamics, to the
best of our knowledge no Mediterranean LFSMs have examined the
effects of (soil) moisture availability. Recent analyses of the rela-
tionship between soil moisture and fertility at the landscape level
(Svoray et al., 2007, 2008) mean that this is an aspect of Mediter-
ranean landscape dynamics that can now be investigated in more
detail with LFSMs. Future application of Mediterranean LFSMs
(including the model presented here) will need to investigate these
relationships at the landscape level in more detail, particularly with
regards spatial patterns of moisture gradients.

In contrast to soil-moisture parameters, parameters controlling
wildfire spread (land-cover flammability, slope risk, and fuel-
moisture risk, Eq. (8)) affect both land-cover composition and
wildfire b values. This fact indicates that these parameters are
important controls on the representation of the wildfire regime,
likely associated with critical threshold behaviour found in CA-type
models (e.g., Ratz, 1995). Changes in the simulated wildfire regime
subsequently effect land-cover composition; decreased b values
result in significant increases in shrubland area (Table 5). In
particular, shrubland area dramatically increases (from 3% to 61% of
the landscape) when all ‘vegetation’ parameters are increased in
the multivariate sensitivity analysis. Furthermore, this multivariate
permutation results in the collapse of the wildfire frequency-area
power-law relationship which has been shown empirically to be



Fig. 5. Spatial representation of landscape change for the vegetation-dynamics model. These simulated land-cover maps for SPA 56 present a spatial representation of the time
series shown in Fig. 4 (for 25 year intervals). The box on year 25 is the outline of the sub-section of the landscape on which we perform our sensitivity analyses. Colour legend as for
Fig. 4.
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robust across many regions of world (Millington et al., 2006). We
observe deviation from the power-law relationship at larger fire
areas for this vegetation permutation because fires spread to span
the entire landscape (also see Malamud et al., 1998). This result
suggests that the parameter values used for this multivariate
permutation do not appropriately represent relationships between
the variables as they exist in the study area. The use of the power-
law relationship to parameterise the model is discussed in more
detail below (Section 5.2).

Variation in seed-dispersal parameters did not result in signif-
icant differences in land-cover composition and did not influence
wildfire b values. Proportional change in the state variable was
generally equal to proportional change in the parameter. This
behaviour indicates seed-dispersal parameters have less influence
on landscape dynamics than moisture gradients and wildfire.
However, decreasing both effective and maximum seed-dispersal
distance parameters (Eq. (2)) in the multivariate permutation
analyses did result in a significant effect on land-cover composition
consistent with expectations (i.e., an increase in non-Forest land
cover, Table 5). Our results are similar to the implementation of the
LANDIS LFSM in a Mediterranean environment (Syphard et al.,
2007). Although the significance of changes in land-cover compo-
sition between seed-dispersal scenarios was not reported, LANDIS
results for effective wind dispersal distances of 50 m and 75 m were
very similar (but did decrease noticeably when effective distance
was reduced to 5 m – Fig. 7 in Syphard et al., 2007). Obligate
seeders did not respond to changes in seed-dispersal distances
(Syphard et al., 2007), again consistent with the behaviour



Table 6
Total Land-Cover Flammability Analysis Results. Values for LCF (see Eq. (8)) for each replicate analysed are presented for each land cover along with default values. Results are
for all fires from 10 simulations for each replicate. Results indicate that increases in total LCF for all land-cover types result in decreases in wildfire power-law frequency-area
distribution exponent b (see Eq. (9)), and increases in maximum area of a single fire and the sum of all fire areas. r2 values are for the best fit line for the power-law frequency-
area distribution.

Replicate LCF (dimensionless) Number of Fires Max. Fire Area (km2) Sum Fire Area (km2) Wildfire b (dimensionless) r2

Pine T. Forest Deciduous Shrubland Oak Total

TF1 0.19 0.19 0.18 0.20 0.18 0.94 892 0.25 12.4 1.52 (	0.16) 0.95
TF2 0.20 0.20 0.19 0.21 0.19 0.99 933 0.34 15.3 1.51 (	0.16) 0.95
TF3 0.21 0.21 0.20 0.22 0.20 1.04 962 0.61 26.8 1.42 (	0.11) 0.97
TF4 0.22 0.22 0.21 0.23 0.21 1.09 966 2.75 47.4 1.36 (	0.12) 0.96
Default 0.23 0.23 0.22 0.24 0.22 1.14 916 3.23 76.1 1.32 (	0.09) 0.97
TF5 0.24 0.24 0.23 0.25 0.23 1.19 947 11.27 206.9 1.26 (	0.06) 0.98
TF6 0.25 0.25 0.24 0.26 0.24 1.24 914 50.62 858.4 1.21 (	0.05) 0.98
TF7 0.26 0.26 0.25 0.27 0.25 1.29 931 135.23 4682.6 1.11 (	0.03) 0.99
TF8 0.27 0.27 0.26 0.28 0.26 1.34 952 162.01 20393.4 0.99 (	0.04) 0.98
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observed in our model. Using an abstract Mediterranean LFSM,
Pausas (1999b) showed variation in vegetation dynamics for
different fire frequencies. Future use and refinement of our model
will examine the interaction of different wildfire regimes with
variations in seed-dispersal distance parameters.

5.2. Landscape model construction

Perry and Millington (2008) distinguish the complementary
approaches of predictive and exploratory spatial modelling of
succession-disturbance dynamics in forest ecosystems. The former
combines understanding and data to predict system dynamics,
whereas the latter aims to improve understanding of systems
where uncertainty is high. Previous spatially explicit models of
Mediterranean succession-disturbance dynamics at the landscape
level have usually been exploratory and independent of empirical
study areas (e.g., Zavala and Zea, 2004; Pausas, 2006). Recently
Syphard et al. (2007) modified the LANDIS simulation model for use
in California, but no LFSMs have been developed to represent actual
landscapes in the Mediterranean Basin. The challenges of repre-
senting existing landscapes in the Mediterranean Basin using
empirical data, highlight many of the aspects of Winsberg’s (1999)
‘epistemology of simulation’. That is, the development of our LFSM
Fig. 6. Example model wildfire frequency-area distributions a) Default parameter values and
replicates. Points are normalised frequency densities f(A) (number of fires per ‘unit bin’ of 1
km2) plotted as a function of wildfire area A. The solid line is the best least-squares fit to log[f
95% confidence) are two standard deviations of the normalised frequency densities f(A) calcu
how the power-law relationship collapses at large fire sizes in b) as fires spread to span th
has required approximations, idealisations and transformations to
confront an analytically intractable spatial and temporal problem in
the face of sparse data. In turn, these have been justified on the
basis of existing theory, available data, empirical generalisations,
and the modellers’ experience of the system and other attempts
made to model it. The use of plant-functional types within a rule-
based framework (derived largely from the RBCLM approach of
McIntosh et al., 2003) is indicative of the qualitative simulation
modelling approach necessitated by the current state of knowledge
regarding Mediterranean vegetation dynamics over large spatial
and temporal extents.

This current state of knowledge requires that models of Medi-
terranean succession-disturbance dynamics represent these
phenomena at a coarser resolution than has been possible in other
regions of the world (such as the northern hardwood forests of the
Great Lakes region using LANDIS, He and Mladenoff, 1999). Never-
theless, the task of parameterising models that scale process
knowledge and information from fine grains to large extents to
represent empirical landscapes remains challenging. For example,
studies have examined the flammability of Mediterranean vegeta-
tion (individual species) according to calorific value (Dimi-
trakopoulos and Panov, 2001), time-to-ignition (Dimitrakopoulos
and Mateeva, 1998), and have classified flammability more
b) þ10% vegetation parameters (Table 5). Each plot is for data for ten 250-year model
km2, normalised by the length of the model run in years and area of the study area in

(A)]¼�b$log[A]þ log a where b and a are constants. Vertical error bars (approximately
lated as 	2

ffiffiffiffiffiffi
dN
p

, where
ffiffiffiffiffiffi
dN
p

is the number of wildfires in a ‘unit bin’ of width dA. Note
e entire sub-section of the landscape we analyse.
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Fig. 7. Wildfire areas for a single 250-year model replicate with default parameter
values. In this instance, the Poisson probability distribution for default climate
parameters results in zero, one or two fires per year (multiple fires in a single year are
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from 0.0009 (a single pixel) to 0.7965 km2.
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generally (Dimitrakopoulos and Papaioannou, 2001). However, no
studies are known to have considered the explicit probability of
spread at the scale considered here (coarse land-cover vegetation
classes at the landscape level) for the CA approach. Consequently,
we ranked land-covers in order of flammability according to these
previous studies (Dimitrakopoulos and Mateeva, 1998; Dimi-
trakopoulos and Panov, 2001; Dimitrakopoulos and Papaioannou,
2001). Multiple sets of flammability probabilities using this ranking
were then tested to find the set that reproduced empirical wildfire-
regime characteristics (i.e., similar b values). Thus, the wildfire
component of the model is parameterised by examining how
changes in fine-scale parameters influence the broad-scale patterns
produced by the model, which in turn are compared to those
observed empirically. This ‘pattern-oriented modelling’ approach
(Grimm et al., 1996, 2005) examines the influence of fine-scale
parameters on broad-scale measures of system behaviour to select
appropriate values for the fine-scale parameters. This is particularly
useful in our case where poor understanding of the more fine-scale
processes driving broader-scale system dynamics and patterns
makes it difficult to parameterise the mechanistic model. Recently,
Grimm et al. (2005) emphasised the use of the pattern-oriented
approach for agent-based modelling, but the approach has also been
used for cellular-automata models (Grimm et al., 1996; Wiegand
et al., 2003). We suggest our approach, utilising b, is useful for the
parameterisation of cellular-automata-based wildfire behaviour
models used in landscape succession-disturbance models in that it
captures the overall behaviour and pattern of fire spread in the
landscape.
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Fig. 8. Relationship between b and total LCF. Error bars are lower/upper 95% confi-
dence intervals, calculated from the standard error. The trend line has r2¼ 0.97.
5.3. Future model development and use

In this paper we have presented the initial steps to conceptualise,
construct and verify a Mediterranean landscape fire-succession
model. Our results show that this version of the model is functioning
as intended and have highlighted which parameters have greatest
influence on two aspects of the model; land-cover change and the
wildfire regime. There are several aspects of our modelling that could
be improved to ensure appropriate representation of Mediterranean
landscape-level patterns and processes. For example, as highlighted
above, Mediterranean LFSMs (including ours) need to consider the
importance of soil-moisture gradients for vegetation in more detail.
Our model will also be refined and used to examine the interaction of
wildfire regimes and seed-dispersal parameters. Furthermore, this
analysis will need to be explicitly spatial as we have focused in this
paper on the aggregated, landscape-level response of land-cover
composition and wildfire-regime characteristics.

Understanding about the flammability of vegetation is
improving for Mediterranean environments and will allow a more
detailed representation of fire intensity and fire effects in the
future. For example, recent progress on the understanding of fuel
loads and canopy-fire characteristics for typical Mediterranean-
type vegetation (e.g., Dimitrakopoulos et al., 2007; Mitsopoulos and
Dimitrakopoulos, 2007) will aid our development of a vertically
layered (three-dimensional) CA wildfire spread model. This would
help overcome the limitations of our current model which is unable
to distinguish between ground and crown fires, and only considers
stand-replacing wildfire events. Incorporating these processes will
in turn allow us to examine the effects of different intensities of
wildfires for landscape-level vegetation dynamics.

Future versions of the model may also need to consider the
introduction (via afforestation of abandoned agricultural land) of
non-native tree species such as Eucalyptus (Eucalyptus globulus).
Eucalyptus has been introduced in Spain since the 1940s for timber
production because it is fast-growing (Chas Amil, 2007). However,
because this species is also highly flammability its introduction
may also be partly responsible for the increases in wildfire
frequency and extent in the Mediterranean Basin during recent
decades (Shakesby et al., 1996). Although not currently an issue in
the region we have considered here, including a ‘eucalyptus’ land
cover in the model may be necessary for its application in other
areas of the Mediterranean Basin.

We intend to use our model to investigate potential impacts of
climate change on Mediterranean landscape wildfire and vegeta-
tion dynamics. Currently, our ability to do this is restricted by the
annual temporal resolution of the model which is unable to
represent the strong seasonality of the Mediterranean-type climate
(Wainwright and Thornes, 2004). In Mediterranean environments
vegetation flourishes in spring following high rainfall during late
autumn/early winter months, but has dried and reaches its most
flammable condition in late summer/early autumn after the long
hot, dry summers. Appropriate representation of seasonal climate
will be vital to ensure LFSMs are able to accurately account for
impacts of climate change on wildfire and vegetation dynamics in
Mediterranean environments. Furthermore, achieving this repre-
sentational fidelity would allow investigation of post-fire effects
that result from the interaction of climate, vegetation and wildfire.
For example, Pausas (1999a) has highlighted the importance of
considering the potential for soil erosion as a result of torrential
rainfall in late autumn following summer wildfire that removes
stabilising vegetation.

The most important development we intend for this model,
however, is the added representation of human activity as a distur-
bance. Other than wildfire, the main impediment to vegetation
succession-type processes in our study area, and other areas in the
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Mediterranean Basin, is agriculture (both arable and pastoral).
However, in recent years SPA 56 has experienced agricultural
decline leading to land abandonment and decreases in agricultural
land covers with commensurate increases in shrub and forest land
covers (Romero-Calcerrada and Perry, 2004). Our model has been
developed with the intention of integrating modules that explicitly
represent human land-use activity to examine these dynamics.
Understanding the interaction of wildfire and vegetation dynamics
with potential future land-use change due to changing social and
economic activity will benefit natural resources managers and local
planning officials. One of the next steps with our modelling research
is to integrate our agent-based model of traditional Mediterranean
agricultural decision-making (Millington et al., 2008) with the
model presented here to investigate how human land-use influ-
ences the wildfire regime and, consequently, vegetation dynamics.
This integrated model will allow us to investigate the relative
importance of climate change versus changes in human socio-
economic activity, and specifically lightning- versus human-caused
fires. Accounting for the influence of human activity on succession-
disturbance dynamics is particularly important in regions such as
the Mediterranean Basin where humans are a pervasive presence in
the landscape and have been for many generations, but which are
now undergoing social and economic change.
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Appendix 1. Soil Conservation Service Curve Numbers. Values
used for CN (dimensionless) in Eq. (5). Infiltration capacity
decreases from soil A to soil D. Sources: Ferrér et al. (1995),
Symeonakis et al. (2004).

Soil Pine T.
Forest

Pasture Deciduous Shrubland Oak HOP Crops Urban Burnt

Slope< 3%
A 35 35 71 35 46 35 56 62 93 91
B 54 54 78 54 68 54 75 72 93 91
C 69 69 82 69 78 69 86 78 93 91
D 77 77 86 77 83 77 91 82 93 91

Slope� 3%
A 39 39 76 39 46 39 56 65 96 94
B 60 60 82 60 68 60 75 76 96 94
C 73 73 88 73 78 73 86 84 96 94
D 78 78 91 78 83 78 91 87 96 94
Appendix. Supplementary information

Supplementary information associated with this article can be
found, in the online version, at doi:10.1016/j.envsoft.2009.03.013
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