Committed carbon emissions, deforestation, and
community land conversion from oil palm plantation
expansion in West Kalimantan, Indonesia

Kimberly M. Carlson®®<", Lisa M. Curran®*“, Dessy Ratnasari®, Alice M. Pittman®®*, Britaldo S. Soares-Filho',
Gregory P. Asner?, Simon N. Trigg", David A. Gaveau®®, Deborah Lawrence', and Hermann O. Rodrigues’

3School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511; P\Woods Institute for the Environment, and ‘Department of
Anthropology, Stanford University, Stanford, CA 94305; dsanta Fe Institute, Santa Fe, NM 87501; €Living Landscapes Indonesia, Pontianak, West Kalimantan,
78121, Indonesia; ‘Centro de Sensoriamento Remoto, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; 9Department of
Global Ecology, Carnegie Institution for Science, Stanford, CA 94305; PNatural Resources Department, School of Applied Sciences, Cranfield University,
Cranfield, Bedfordshire MK43 0AL, England; and 'Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904

Edited by Emilio F. Moran, Indiana University, Bloomington, IN, and approved March 20, 2012 (received for review January 10, 2012)

Industrial agricultural plantations are a rapidly increasing yet
largely unmeasured source of tropical land cover change. Here,
we evaluate impacts of oil palm plantation development on land
cover, carbon flux, and agrarian community lands in West Kaliman-
tan, Indonesian Borneo. With a spatially explicit land change/carbon
bookkeeping model, parameterized using high-resolution satellite
time series and informed by socioeconomic surveys, we assess pre-
vious and project future plantation expansion under five scenarios.
Although fire was the primary proximate cause of 1989-2008 de-
forestation (93 %) and net carbon emissions (69 %), by 2007-2008, oil
palm directly caused 27% of total and 40% of peatland deforesta-
tion. Plantation land sources exhibited distinctive temporal dynam-
ics, comprising 81% forests on mineral soils (1994-2001), shifting to
69% peatlands (2008-2011). Plantation leases reveal vast develop-
ment potential. In 2008, leases spanned ~65% of the region, includ-
ing 62% on peatlands and 59% of community-managed lands, yet
<10% of lease area was planted. Projecting business as usual (BAU),
by 2020 ~40% of regional and 35% of community lands are cleared
for oil palm, generating 26% of net carbon emissions. Intact forest
cover declines to 4%, and the proportion of emissions sourced from
peatlands increases 38%. Prohibiting intact and logged forest and
peatland conversion to oil palm reduces emissions only 4% below
BAU, because of continued uncontrolled fire. Protecting logged for-
ests achieves greater carbon emissions reductions (21%) than pro-
tecting intact forests alone (9%) and is critical for mitigating carbon
emissions. Extensive allocated leases constrain land management
options, requiring trade-offs among oil palm production, carbon
emissions mitigation, and maintaining community landholdings.
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lobal demand for food, biofuels, and natural resources drives

capitalized agricultural development, especially for tropical
plantations (1-4). Forest and peatland conversion to plantation
agriculture may be a substantial source of greenhouse gas (GHG)
emissions from land cover change (5, 6), which generates 10-20%
of net global GHG emissions (7). By acquiring extensive arable
lands, plantations also affect land availability for smallholder
farmers and communities, potentially altering local livelihood
options (8, 9). Whereas environmental degradation from tropical
agribusiness may overwhelm benefits of high-yield plantations for
world food security (6, 10), impacts on carbon (C) flux and live-
lihoods are highly uncertain because locations and land sources
for plantations remain largely undocumented.

Complex processes of land acquisition and plantation de-
velopment unfold across heterogeneous biophysical and socio-
political landscapes in both time and space. Land cover histories
constrain present land use and potential outcomes from agribusi-
ness expansion (11). Discerning the land cover trajectories that
precede agribusiness development requires documenting historical
land use by various agents, as well as land jurisdiction (12, 13).
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Longitudinal, regionally informed land cover assessments at high
temporal and spatial resolution are essential to capture the land
cover sources and dynamic, often-punctuated changes brought
about by plantation expansion (14, 15).

Such refined evaluations are critically needed in tropical
countries, especially Indonesia. Since 1990, Indonesia has expe-
rienced one of the most rapid plantation expansions worldwide.
The Agricultural Ministry’s records indicate that from 1990 to
2010, oil palm (Elaeis guineensis) area increased 600% to 7.8 Mha
(16). Over 90% of this development occurred in Sumatra and
Indonesian Borneo (Kalimantan) (17), regions that lost ~40% of
lowland forests from 1990 to 2005 (18). As a result of this extensive
deforestation, annual GHG emissions in Indonesia—currently
among the top 10 national emitters—are sourced predominantly
from land cover/land use change (19). However, the locations,
patterns, and land cover sources for oil palm plantation expansion;
the extent and distribution of undeveloped oil palm leases pending
near-term development; and carbon emissions from oil palm ag-
riculture remain largely undocumented (20-22).

To acquire such datasets for tropical regions requires in-
tegrating remote sensing products with interdisciplinary methods
and analyses (15). Although optical remote sensing satellites such
as Landsat have sufficient temporal (~20 d) and spatial (<30 m)
resolution to detect small land cover patches and punctuated land
cover change, they are hampered by cloud cover and cannot be
used to map carbon stocks (23, 24). Technologies such as light
detection and ranging (LiDAR) and radar are effective for map-
ping aboveground live biomass (AGB) [metric tons (t) C-ha™'] in
tropical forests (e.g., refs. 25 and 26), and even belowground
carbon in peatlands (27), yet are not available to capture historical
(i.e., pre-2000) conditions. As a result of these limitations, carbon
flux estimates from land cover change typically rely on multiplying
forest area lost by forest AGB (28). However, such measures
contain considerable uncertainties because they treat AGB as
a discrete rather than a continuous variable, cannot account for
carbon flux from land cover change pre- and postdeforestation,
and may group multiple land covers into a few broad classes (29).
Until carbon flux from land cover change can be directly assessed,
a transition-based framework—where emissions and sequestra-
tion are estimated for multiple land cover transitions over time and
space—is the most robust method to evaluate carbon emissions
from agribusiness-related land change (30).
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Quantifying carbon stocks for major tropical land covers, in-
cluding logged forests and existing agricultural lands, presents
several major challenges. Since the 1980s, Kalimantan’s intact
forests experienced massive degradation from logging in federal
timber concessions, with related declines in AGB, and subsequent
regrowth (12, 14, 31). However, forest degradation from logging is
difficult to detect due to its spatial and temporal heterogeneity,
and timber volume removed and biomass accumulation from
forest regeneration are variable (15, 32). Moreover, rural agrarian
communities in Kalimantan maintain considerable landholdings
associated with swidden agriculture (9, 33). These managed agri-
cultural lands, common throughout the humid tropics, are char-
acterized by fallow-cropping cycles of land clearing and regrowth
that generate substantial, yet heterogeneous and dynamic, carbon
stocks (34, 35). Because Kalimantan contains one-third of Indo-
nesia’s peatlands, which harbor the most tropical peat carbon
worldwide, belowground carbon is also critical (36, 37). Clearing
and draining these peatlands produce considerable carbon emis-
sions from peat oxidation and burning (38, 39).

Although oil palm plantations continue to expand (40), the
Government of Indonesia (GOI) has pledged to reduce 26% of
their projected business-as-usual 2020 GHG emissions (2.5-3 Gt
CO, equivalent) (41). Diverse international initiatives—including
Reducing Emissions from Deforestation and forest Degradation
(REDD+), industry roundtables (e.g., Roundtable on Sustainable
Palm Oil), and multinational donor agreements—seek to reduce
carbon emissions or mitigate impacts of tropical agribusiness.
Spatially explicit land change models are useful heuristic tools to
evaluate the potential of these proposed policies to achieve their
intended outcomes (11, 42). Such models facilitate comparisons
among future scenarios that may incorporate economic conditions,
natural phenomena, company practices, and smallholder decision
making. Ideally, scenario modeling identifies unforeseen rela-
tionships and outcomes to provide critical insights for evaluating
trade-offs among policies and practices.

Given the importance of Indonesia’s land-based carbon emis-
sions, and uncertainties surrounding historical and future oil palm
development, we developed a longitudinal study of oil palm
plantation development (1989-2020) in Ketapang District, West
Kalimantan (Fig. 1). This district comprises the full range of land
covers found in Kalimantan, has experienced rapid and extensive
land cover change from diverse processes and agents (e.g., wild-
fires, logging, and plantations), and was among the earliest districts
to receive private sector oil palm development (~1994). Using this
representative region, we (i) evaluate how allocated and planted
oil palm, including land cover types converted, vary across both
space and time; (if) assess the relative contribution of oil palm
expansion to deforestation and carbon flux; and (iii) model future
scenarios of oil palm expansion and forest conservation policies to

Fig. 1.

examine potential effects on land cover, carbon flux, and agrarian
community landholdings.

To assess land cover change, we evaluated transitions among land
cover classes (Fig. 2) derived from classified Landsat images ac-
quired from 1989 to 2008, supplemented by a 2011 Landsat image
with recent oil palm expansion delineated. Then, we modeled the
potential effects of future oil palm expansion and forest conserva-
tion policies on land cover, carbon flux, and rural agrarian com-
munities from 2008 to 2020. We contrasted five locally informed
scenarios of oil palm development: business as usual (BAU), mor-
atoria (M) on oil palm expansion into peatlands and intact (MInt)
and previously logged forests (MSec), and forest protection (FP) for
intact (FPInt) and previously logged (FPSec) forested lands exempt
from oil palm expansion under the moratorium.

Results

0il Palm Development. In this Ketapang study region, oil palm
plantation land clearing was first observed in the 1994 Landsat
image. By 2008, plantation area (n = 16 leases) had expanded to
occupy 6% of land outside protected areas (PAs) (Fig. 14).
Analysis of regional governmental records indicates that median
initial oil palm lease clearing occurred 3 y (range 1-6) after the
first record of lease application. Because oil palm development is
controlled by lease allocation and influenced by market and po-
litical conditions, expansion rates were highly punctuated. From
1994 to 1997, all planted oil palm (0.60% of non-PA land area-y ")
occurred in leases awarded from 1990 to 1994 (n = 6), pre-
dominantly in former logging concessions (14). From 1997 to
2005, a period characterized by political and financial volatility, we
observed reduced expansion in active leases (0.04%-y™"), and no
new leases began clearing. Elevated 2005-2008 clearing rates
(1.33%-y™") were facilitated by clearing in 10 new leases distrib-
uted since 2003, coupled with relatively high export commodity
prices (6). In 2008, 65% of non-PA lands were allocated to oil
palm leases (n = 45 leases). However, 91% of these leased lands
(n = 29 leases) had yet to begin land preparation and clearing.
From 2008 to 2011, 11 leases initiated clearing, driving high con-
version rates (2. 60%- 1), and oil palm expanded to occupy 14%
of non-PA lands (Fig. 1B). Eighty percent of allocated lease area
remains unplanted, with 61% on peatlands.

Land Cover Sources for Oil Palm. From 1989 to 2008, forests were
the primary land cover source (49%) for oil palm plantations.
Intact forests composed the majority of this conversion (21%),
followed by secondary (21%) and logged (7%) forests. In addition,
37% of oil palm replaced agroforests and agricultural fallows.
Only 14% of oil palm was sourced from burned/cleared and bare
lands. Across the time series, land and soil types sourced for oil
palm expansion were dynamic (Fig. 3). From 1994 to 2001, 81% of

Study region in Ketapang District, West Kalimantan, Indonesia. This coastal region (12,000 km?, Landsat path/row 121/061) contains ~50% peatlands

and surrounds Gunung Palung National Park (GPNP, 1,000 km?) and other protected areas (PAs, 1,800 km?). (A) 2008 land cover in oil palm leases. Whereas
6% of non-PA lands were cleared for or planted with oil palm, 91% of plantation leases (6,037 km?, n = 45) sited mainly (62%) on peatlands remained
undeveloped. (B) Land cover sources for oil palm, 1994-2011. Forests (intact, logged, and secondary) were the primary land cover source (49%) for oil palm. By
2011, oil palm spanned 14% of non-PA lands. (C) Business-as-usual (BAU) scenario, 2020. Forests cover only 24% of the region, and oil palm occupies 41% of
non-PA lands. (D) FPSec scenario, 2020. Protection against deforestation and degradation of intact and logged forests in PAs and undeveloped oil palm leases
yields 36% greater forest fraction (32% of the region) and 28% lower oil palm area (~30% of non-PA lands) compared with BAU. Future land cover maps

(C and D) were chosen from 60 model runs per scenario.
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Fig. 2. Land cover transitions. Our land cover change simulation, imple-
mented in Dinamica environment for geoprocessing objects (EGO) (51), in-
corporated dynamic forest degradation (logging), deforestation, and
regrowth transitions among seven major land cover classes derived from
Landsat satellite data: (A) intact forests, closed-canopy natural forests without
detectable evidence of disturbance; (B) logged forests, natural forests with
detectable canopy disturbance; (C) secondary forests, recovering logged for-
ests (i.e., not burned, cleared, or relogged after the initial logging event); (D)
burned and cleared lands, nonforests characterized by recent clearing or
burning, including fields burned or cleared for swidden rice production; (E)
bare lands, including roads, rivers, human settlements, and open mines; (F)
agroforests and agricultural fallows, swidden agricultural production systems
including rice fields, rice fallows, rubber, fruit gardens, and coconut groves,
with regrowth on previously burned, cleared, and bare soil areas; (G) oil palm,
areas cleared for or planted with oil palm. Unidirectional land cover tran-
sitions are indicated by dashed lines. For example, although intact forests can
be logged, these logged forests cannot return to their previous intact state
within the modeled 32-y time series.

plantations were converted from forests on mineral soils. Con-
versely, from 2001 to 2008, agroforests and nonforests were
cleared at the highest rates (72%). Since 2008, forested peatlands
composed the largest fraction (44%) of conversion. Through 2007,
73% of oil palm expansion occurred on mineral soils with 27% on
peatlands. However, from 2007 to 2008, peatlands composed 54%
of conversion, reaching 69% from 2008 to 2011. By 2011, planted
oil palm spanned 51% mineral soils and 49% peatlands.

Forest Cover Loss. Deforestatlon—conversmn of intact, logged, and
secondary forest—averaged 2.9%-y~' from 1989 to 2008 (Table
S1). Forest cover outside PAs decreased from 59% to 22%, with
especially steep declines in 1ntact forest area (51-6%, Fig. S1).
Forest loss peaked at 9.0%-y~! during extensive fires associated
with the 1997-1998 El Nifio Southern Oscillation (ENSO) (12).
Wildfires escaping from oil palm plantations likely contributed to
this deforestation; ~8% of total area burned in 1997 occurred
<5 km from oil palm. The major proximate causes of forest cover
loss were fire related (93%), including transitions to agroforests
and agricultural fallows and direct conversion by fire. Whereas only
6% of regional 1994-2008 forest loss could be directly attributed
to oil palm expansion, by 2007-2008, 27% of deforestation was
ascribed to oil palm, including 40% of all peatland deforestation.
Over 50% of forests converted to oil palm had been logged before
forest clearing. Although we observed several locations where
logging was conducted or contracted by oil palm companies, we did
not attribute logging to oil palm development. Our analyses
therefore underrepresent the proportion of intact forest loss and
associated carbon emissions driven by plantation expansion.

Land Cover Change Under Land Management Policy Scenarios. Across
oil palm expansion scenarios, by 2020, oil palm covered 29-41% of
non-PA lands. Under BAU, 62% of oil palm was planted on
peatlands (Fig. 1C). However, for all M and FP scenarios, only 46—
49% of oil palm was converted from peatlands. Whereas oil palm
extent did not differ significantly across M and FP scenarios (P >
0.05), the FP scenarios conserved significantly higher forest

Carlson et al.

Fig. 3. Land cover sources for oil palm plantation establishment and total
planted oil palm, from 1994 to 2011. Land cover sources across (Upper) mineral
and (Lower) peat soils were identified by analyzing land cover transitions to oil
palm pixels for each time step of the seven-image time series. Oil palm
planting began in the Ketapang study region in 1994. Through 2007, oil palm
plantations were concentrated on mineral soils. By 2011, 49% of oil palm was
planted on peatlands.

fraction and generated significantly lower burned/cleared and bare
fraction than the M scenarios (Fig. 4). The FPSec scenario (Fig.
1D) yielded significantly higher forest fraction coupled with sig-
nificantly lower agroforest and burned/cleared and bare fraction
than the FPInt scenario. Land cover class fractions were not sig-
nificantly different between the MInt and MSec scenarios.

Carbon Flux. From 1989 to 2008, total carbon committed to the
atmosphere was estimated at 11 4 MtCy~!, with 12.3 MtCy™
gross emissions, and 0.9 MtC-y~" gross sequestratlon (Fig. S2).
The 1997-1998 ENSO event with associated fires contributed the
highest annual net carbon flux (19% of the 20-y total-y~", Fig. 5).
Peatlands were the source of 57% of net carbon emissions. The
proportion of net carbon flux from peatlands increased from
50% in the 1990s to 68% in the 2000s. The AGB pool yielded
65% of net carbon emissions, whereas peat burning and draining
contributed 21% and 14%, respectively. Whereas forest
regrowth offset gross carbon emissions in the AGB pool by 2%,
agroforest growth offset 9% of these emissions. Land cover
transitions mediated by fire composed 69% of net carbon flux,
followed by logging (27%). Oil palm emitted only 3% of net
carbon from 1994 to 2008 or 4% excluding the 1996-1997 ENSO
time step (Fig. S3). Over 75% of gross carbon emissions from oil
palm were sourced from clearing AGB in intact, logged, and
secondary forests on mineral soils. Peatland deforestation and
draining for oil palm contributed relatively few gross emissions
(10% and 11%, respectively).

Carbon Flux Under Land Management Policy Scenarios. From 2008 to
2020, modeled mean annual carbon flux in the BAU scenario
was 11.9 MtCy~', 14.0 MtC-y~" gross emissions, and 2.1 MtC-y™!
gross sequestration (Fig. S2). Both M and FP scenarios showed
reductions in net carbon emissions compared with BAU. Ex-
cluding oil palm from forests and peatlands under the M sce-
narios reduced net carbon emissions only 3-4% below BAU.
Because so few intact forests remain, protecting secondary and
logged forests (FPSec) achieved more than twofold greater
carbon reductions (21%) than protecting intact forests alone
(FPInt, 9%). Across all scenarios, 86-92% of net carbon emis-
sions originated from peatlands. The peat burning pool con-
tributed 44-52% of carbon flux, with 30-36% attributed to peat
draining. The AGB pool contributed only 13-24% of net carbon
emissions. Whereas fire-related land cover transitions were the
primary cause of carbon flux in all scenarios (67-74%), oil palm
was the second leading source of carbon emissions (18-26%, Fig.
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Fig. 4. Land cover distribution in 2008 with projections through 2020 for
five oil palm expansion scenarios. Land cover is compared for (A) intact
forests, (B) logged forests, (C) secondary forests, (D) agroforests and agri-
cultural fallows, (E) burned/cleared and bare soils, and (F) oil palm. Shaded
circles denote 2008 land cover. Line demarcates the median of 20 scenario
runs; shaded upper and lower bounds indicate 25th/75th percentiles;
whiskers represent 10th/90th percentiles. NS indicates nonsignificant (P >
0.05) differences in land cover fraction between scenarios, measured with
paired t tests. The MInt scenario (not displayed) did not differ significantly
from the MSec scenario for all land cover classes.

S3). Peat draining comprised the greatest source (54-59%) of
gross emissions from oil palm, with 26-33% derived from con-
version of AGB in intact, logged, and secondary forests on
peatlands. Deforestation on mineral soils contributed only 8-
12% of gross oil palm emissions. Carbon sequestration from oil
palm growth offset only 15% of gross oil palm emissions for the
12-y period in the BAU scenario. Net annual carbon emissions
decreased from 2008 to 2020 in all scenarios, driven by declining
emissions from peat burning and AGB pools (Fig. 5 A-D). In all
scenarios except BAU, the AGB pool became a net carbon sink
by 2020. Drained peatlands became the primary carbon emis-
sions source in 2020 for the BAU and FPSec scenarios. M and
FP scenarios yielded stable levels of emissions from peat drain-
ing starting in ~2015, yet draining emissions continued to in-
crease through 2020 under BAU.

4 0of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1200452109

Agrarian Communities. From our field-generated maps of 247
resident agrarian communities, we estimate that 3,928 km? of
“community-managed lands” (<5 km from settlements, excluding
PAs) span this region. Through the early 2000s, community land
area converted to oil palm remained low, increasing from 1% in
1996 to 2% in 2005 (Fig. SE). In 2008, community area planted
with oil palm expanded to 6%, and 51 surveyed communities
(21%) were <5 km from planted oil palm. Moreover, 59% of
community-managed lands, representing 191 villages, overlapped
oil palm leases. By 2011, community lands occupied by oil palm
had more than doubled (13%). By 2020 under BAU, even in-
cluding a 2-km buffer around settlements preventing oil palm
conversion, planted oil palm spanned 35% of community-man-
aged land area. In the best-case FPSec scenario, 28% of com-
munity-managed land area was controlled by oil palm plantations
in 2020.

Discussion

0Oil Palm Lease Allocation and Development. Because oil palm de-
velopment is characterized by lags between lease allocation—in-
cluding requests, assessments, and permits—and the onset of
landclearing, conversion of allocated oil palm leases alone will
generate considerable near-term deforestation and carbon emis-
sions. Although fires were the primary proximate cause (93%) of
regional deforestation from 1989 to 2008, since 2007, plantation
expansion directly contributed 27% of regional deforestation.
Governmental lease records indicate that currently awarded or
“committed” oil palm development will be concentrated in peat-
lands. Whereas ~50% of the Ketapang region spans peatlands, in
2011, 61% of undeveloped lease area was allocated on peatlands.
These leases were allocated before the 2011 GOI moratorium on
peatland conversion and remain available for oil palm de-
velopment. BAU scenario results indicate that ~40% of peatlands
will be planted with oil palm by 2020, with carbon emissions from
peatlands projected to contribute 87% of total emissions under
BAU. Existing regulations prohibiting using fire to prepare lands
for plantation agriculture, if enforced, may mitigate peat burning
emissions. However, oil palm cultivation on peatlands requires
draining these soils, resulting in committed carbon emissions from
peat oxidation that will continue beyond 2020. Such projections
are dependent on the volume of peat losses related to peat
drainage depth, characterized by pronounced temporal and spa-
tial heterogeneity and thus considerable uncertainty (38).

Forest Protection Critical for Carbon Emissions Mitigation. Critically,
outcomes from five policy scenarios indicate that mitigating
carbon emissions requires not only prohibiting oil palm expan-
sion into peatlands, but also actively protecting forests in oil
palm leases and PAs from all causes of deforestation and deg-
radation. Conservation-based M scenarios reduced 2008-2020
carbon emissions only 3-4% below BAU levels. Merely enforc-
ing a moratorium on converting forests and peatlands to oil palm
plantations is predicted to generate negligible carbon emissions

Fig. 5. Annual carbon flux and community land area
planted with oil palm under five policy scenarios. (A)
Total carbon emissions peaked in 1997-1998 when
ENSO-associated fires burned (B) aboveground bio-
mass (AGB) and (C) peatlands. (D) Carbon emissions
from peat draining were a minor contributor to car-
bon flux pre-2009, but become a major source of
emissions by 2020. () Community land area (<5 km
from settlements, excluding PAs) converted to in-
dustrial oil palm plantations increased from 6% in
2008 to 28-35% in 2020 across all scenarios. Results
from 1989 to 2008 were annualized and then plotted
at the final year of each interval. Lines represent
means of 20 model runs for each scenario. Gray areas
indicate minimum and maximum annual estimated
carbon flux derived by applying low and high carbon
input values. Positive values indicate carbon emis-
sions; negative values represent carbon sequestration.
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reductions because other proximate causes (e.g., wildfires) con-
tinue to contribute to forest loss. Moreover, as agroforests are
converted to oil palm plantations, smallholder agriculture may
be displaced onto forested lands. Compared with BAU, the FP
scenarios yielded 9-21% carbon emissions reductions while
conserving 22-36% greater forest cover. FP and M scenarios
maintained similar plantation area. Most importantly, results
from the FPSec scenario reveal that protecting secondary and
logged forests, not covered by the GOI moratorium (43), is the
strategy that most effectively reduces carbon emissions and
maintains forest cover extent. Contrasted with FPInt, by 2020
FPSec yielded 11% greater forest cover with 13% lower net
carbon emissions. Forest protection depends on effective pre-
vention of wildfire, logging, and agriculture on forested lands
within oil palm leases and PAs.

0il Palm Expansion onto Communities’ Lands. In contrast, the BAU
trajectory, with ~40% of non-PA land area planted to oil palm by
2020 and only 24% residual forest cover, generates extreme
concentration of palm oil agribusiness, with global markets and
industry behavior affecting smallholder farmers, local ecosys-
tems, and regional economies. Impacts of such teleconnections
are amplified when community-managed lands are converted to
plantations. Whereas forests were the primary land cover source
(49%) for oil palm across our time series, from 2001 to 2008
agroforests and agricultural fallows comprised the majority
(55%) of plantation land clearing. In all future scenarios, even
when a 2-km buffer around settlements was enforced (a re-
striction not required by any current GOI regulations), 28-36%
of non-PA lands <5 km from village centers were projected for
conversion to oil palm by 2020.

Community-managed agricultural lands are often viewed as
underused and treated as “degraded” by governments and com-
panies (8, 9). Moreover, these lands have been recommended as
targets for land swaps that aim to shift oil palm from forests (e.g.,
refs. 5, 44, and 45). However, the term degraded is inherently
value laden: Degraded for whom, for how long, and relative to
what? Moreover, land sparing worldwide has occurred only under
alimited set of circumstances (46). Secondary effects of plantation
expansion into established agricultural lands, including small-
holder displacement and changes in land access, require long-term
assessments of complex responses and impacts (2, 4, 47). Con-
verting swidden agricultural systems disregards both the rights of
smallholder farmers and the diverse services these lands provide
and may not spare forested lands from deforestation.

C Sequestration. Our land change model contributes an advance in
carbon accounting by incorporating dynamic forest and agricul-
tural regrowth to estimate carbon emissions offsets. Results sug-
gest that secondary forest, agroforest, and oil palm growth
contributed relatively low carbon offsets through sequestration
(8% through 2008 and 17% in the BAU scenario). Although
carbon sequestered through forest regrowth could become in-
creasingly important in systems experiencing forest transitions
over extradecadal timescales (48), we find that reducing proximate
carbon emissions requires considerable efforts to achieve contin-
uous protection of existing forests within oil palm leases and PAs.

Implications. Protecting intact, logged, and secondary forests but
especially peatlands is most critical for reducing carbon emissions
from land cover change in Kalimantan. We caution that viable land
management solutions—constrained by extensive allocated oil
palm leases—may not simultaneously provide full carbon emissions
mitigation benefits while protecting smallholder agriculture and
maximizing palm oil production. Nevertheless, our analyses gen-
erate several insights for evaluating the relative impacts of oil palm
plantation development. First, although multiple studies examine
trade-offs among future land cover scenarios, rarely have local
communities been considered in land policy evaluations (but see
ref. 49). Including diverse agents (e.g., communities, governments,
and companies) into locally informed and realistic policy simu-
lations will best capture heterogeneous responses to and out-
comes from projected conditions. Second, substantially enhanced
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government and private sector transparency, especially surrounding
lease allocation, is critical for understanding the lags and feedbacks
that characterize industrial agricultural development (36). Most
importantly, assessments of sustainable palm oil must consider land
use histories and evaluate whether the process of land acquisition—
especially from resident smallholder farmers and communities—
not only meets criteria for free, prior, and informed consent or
dissent, but also is equitably and transparently compensated. By
incorporating diverse trade-offs for multiple agents, such research
enhances our capacity to discern context-specific conditions, land
use policies, and potential outcomes driven by land acquisition and
conversion to plantation agriculture.

Methods

Satellite Image Processing. Eleven Landsat images [thematic mapper (TM) and
enhanced thematic mapper plus (ETM+), 30 m; path 121/row 61] were ac-
quired from 1989 to 2008. All were somewhat cloudy (11-71%), so scenes
from adjacent years (e.g., 1999 and 2001) were merged to create a time
series of 7 images (1-7 y between time steps). Total land area assessed was
12,038 km?. PAs comprised 2,779 km? with the remaining 9,329 km? outside
PAs. One module of Carnegie Landsat Analysis System-Lite (CLASIite) (50)
was used to convert Landsat data to reflectance and to apply a probabilistic
spectral unmixing model, yielding fractional cover per pixel consisting of
photosynthetic vegetation, nonphotosynthetic vegetation, and soil (50).

Land Cover Classification. We developed a land cover classification system using
CLASlite and ancillary (e.g., slope) data to identify dominant land covers in the
region (Fig. 2 and S/ Methods). Areas planted with or being cleared for oil palm
were manually digitized from Landsat reflectance data, including an image
acquired in July 2011. Clearing included roads laid out in gridded patterns
indicating future oil palm development. Oil palm locations were confirmed
with global positioning system (GPS) data collected from 2005 to 2011.

Land Change Model. With Dinamica EGO, we modeled spatially explicit land
cover change from 2008 to 2020 (S/ Methods). We developed a module to
allocate oil palm expansion independent of other land cover change. To
constrain plantation expansion, we obtained oil palm concession maps
(“oil palm leases”) for 2008 (SI Methods). These leases represent planta-
tions at all stages of the permitting and development process. Over 99% of
2008 planted oil palm fell within these leases, suggesting lease maps pro-
vide suitable boundaries for oil palm expansion. Oil palm expansion is
a function of plantation establishment rate (i.e., number of leases initiating
clearing per annum), annual lease clearing rate, and plantation location.
To determine plantation location, plantations initiating clearing were se-
lected randomly from 29 undeveloped oil palm leases. Within an active
plantation lease, oil palm expanded until the entire lease area, constrained
by specific scenario conditions, was converted. Oil palm could not expand
into unsuitable regions (>45° slope, >500 m above sea level) or areas
regulated as off-limits (<200 m from rivers, PAs). We collected settlement
coordinates (247 villages with >100 households per village) from 2005 to
2010. Oil palm expansion was excluded from circular buffers (2-km radius)
around villages.

Scenarios. With our model, we contrasted five scenarios of oil palm de-
velopment. All scenarios were run for 12 y (2008-2020) with ENSO events
occurring at 5-y intervals starting from the 2009 ENSO. BAU reflects Indo-
nesia’s national objective to double oil palm production by 2020 (40). BAU
applies the 2005-2008 mean plantation establishment rate of two planta-
tions initiating clearing per annum and assumes that the area cleared per
plantation continues to proceed at the mean 1989-2008 rate (2,900 ha~y’1).
M scenarios correspond to policies prohibiting forest and peatland conver-
sion to oil palm. The Government of Norway has entered into a bilateral
agreement to pay the GOI $1 billion (US) to enforce a mid-2011-2013
moratorium on the allocation of new forestry and plantation permits on
“primary natural” forests and peatlands (43). Under the Mint scenario, oil
palm plantations initiating clearing from 2012 to 2020 are prohibited from
expanding into peatlands and intact (approximately equivalent to primary
natural) forests. Our scenario is considerably more restrictive and sustained
than the GOI's moratorium; in MInt, expansion is prohibited even if the land
was already leased for oil palm in 2008, and restrictions are implemented for
8y (vs. 2 y under the GOI moratorium). In the MSec scenario, Mint restric-
tions are expanded to prevent conversion of logged and secondary forests to
oil palm. Except for these constraints, the M scenarios are identical to BAU.
FP scenarios simulate proposed REDD projects and industry initiatives by
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protecting forested lands exempt from oil palm expansion in the M sce-
narios. Forests in PAs, undeveloped oil palm leases, and oil palm leases ini-
tiating clearing post-2011 receive full protection from degradation and
deforestation, including fire, from 2012 to 2020. Forests outside oil palm
leases and PAs remain unprotected. These protections are implemented in
combination with the moratorium on oil palm expansion into intact forests
and peatlands. Under the FPInt scenario, intact forests and peatlands are
protected from deforestation and logging. The FPSec scenario extends
protection to logged and secondary forests. Displaced land cover change or
“leakage” may occur when forested lands are protected. In FP simulations,
we prevented leakage by protecting forests after allocation of land cover
changes for each modeled time step.

Carbon Flux Quantification. We designed a carbon bookkeeping model, pa-
rameterized with regional carbon data and coupled with the Dinamica EGO
land cover change model, to track spatially explicit carbon stocks and flows (S/
Methods). In the AGB pool (Table S2), we estimated carbon emissions from
deforestation and logging of intact, secondary, and logged forests, as well
as from agroforest clearing. We measured carbon sequestration from
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growth of secondary forest, agroforest, and oil palm. In the belowground
carbon pool (Tables S3 and S4) we assessed carbon emissions from peatland
draining and burning. To estimate emissions from peat draining, land cover
classes on peatlands including agroforests, oil palm, burned/cleared, and
bare soil were treated as drained. We assumed that no burning occurs in
peatlands planted with oil palm and we did not include peat emissions from
draining post-2020. Thus, carbon emissions from oil palm on peatlands were
underestimated (22).
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SI Methods

Study Region. The Ketapang District study region (2°S 110°E) in
West Kalimantan spans 0-665 m above sea level (asl). This asea-
sonal, ever-wet tropical moist forest region receives ~4,125 mm-y ™
precipitation (1). During El Nifo Southern Oscillation (ENSO)-
associated droughts monthly rainfall may decline below 100 mm
for 2-5 consecutive months (2, 3). Regional Indonesian residents
span diverse ethnicities (e.g., Dayak, Melayu), including govern-
ment-sponsored transmigrants (4). Population density (16 peo-
ple-km~2 in 2000) is heterogeneous and concentrated in coastal
towns (5). This region contains Gunung Palung National Park
(GPNP, 1,000 kmz) and 1,800 km? of other protected areas (PAs).

Land Cover. Forest vegetation formations in Ketapang include
lowland dipterocarp forest, freshwater swamp, heath forest, and
peat swamp forest (6); 50% of the study area is classified as
peatland (7). Most forests outside PAs have been logged, as
industrial logging began in the 1970s (2, 8, 9). In 2002, when the
majority of timber concessions ceased operations, oil palm rap-
idly became the primary commercial land use across West Ka-
limantan, concentrated particularly in Ketapang, where oil palm
plantation development began in the early 1990s.

Throughout this region, rural agrarian communities maintain
extensive agroforests and agricultural fallows (collectively re-
ferred to as “agroforests”), consisting of small (1-5 ha) parcels
including rain-fed rice fields, secondary forest fallows, cash crops
(e.g., rattan), rubber (Hevea brasiliensis) gardens, and fruit gar-
dens (10). These mosaics often meet Indonesia’s national defini-
tion of forest, including canopy cover >30%, vegetation height >5
m, and area >0.25 ha (11).

Burned/cleared lands compose a significant regional land cover
type. Unplanned fires escaping from plantations and roads are
common, especially during ENSO-related droughts (12, 13). Until
recently, oil palm companies used fire to prepare forested areas
for plantations, despite regulations prohibiting such practices (12,
13). In addition, agrarian households typically burn small (0.5-2
ha) parcels annually to prepare for rain-fed rice cultivation (14).

Land Cover Classification. A land cover mapping algorithm was
developed using image segmentation and nearest-neighbor clas-
sification with eCognition software (15). Inputs to the classifica-
tion included Carnegie Landsat Analysis System-Lite (CLASlite)
data (16), slope and aspect layers, and planted oil palm. Slope
and aspect were derived from a 90-m Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) (17) and re-
sampled to 30 m in ENVI 4.7 (18). To distinguish clearing and
degradation of “natural” forests from dynamics associated with
swidden agriculture (19-21), we manually delineated forest areas
from Landsat reflectance imagery. Slope and aspect data were
used to adapt the nearest-neighbor algorithm to correctly classify
relatively bright or dark pixels on slopes.

The final classification decision tree in eCognition comprised
eight steps: (i) multiresolution segmentation to break the image
into small segments; (if ) spectral difference segmentation to merge
spectrally similar segments; (iii) classification of oil palm planta-
tions based on manually defined oil palm; (iv) nearest-neighbor
classification of forest, agriculture, bare soil, and burned/cleared
areas based on user-selected samples; (v) reclassification of for-
ested areas previously misclassified as agriculture on the basis of
the manually defined forest layer; (vi) reclassification of forest
areas <45 ha to agriculture; (vii) nearest-neighbor classification
refinement of forest areas into subclasses—intact, logged, and
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regrowth postlogging—from user-selected samples; and (viii)
nearest-neighbor classification partitioning agricultural areas on
mineral soils into age classes (<10 y and >10y postland clearing)
on the basis of user-selected samples.

Because spectral characteristics of peatland forest are distinct
from those of forests on mineral soils, peatlands and mineral soils
were classified separately. Moreover, because CLASIite’s atmo-
spheric correction algorithm does not remove all noise from
Landsat images, each image was classified on the basis of sam-
ples selected only from that image date. As a result, each set of
classification parameters differed slightly.

Nine land cover classes were produced from the classification: (i)
intact forest; (ii) low-intensity logged forest; (iii) high-intensity
logged forest; (iv) secondary forest, defined as recovering logged
forests; (v) <10 y agroforests and agricultural fallows; (vi) >10y
agroforests and agricultural fallows; (vii) burned or cleared re-
gions; (viii) bare soil or built areas; and (ix) oil palm plantations.
Because all images were somewhat cloudy (11-71%), scenes from
adjacent years (e.g., 1999 and 2001) were merged to create a final
time series of seven images, at 1- to 7-y intervals, resampled to 100
m. We then applied postclassification change detection to track
the history of each pixel, identifying impossible transitions that
could not occur during the time interval assessed. For example,
transitions from “logged forest” to “intact forest” were reclassified
as “secondary forest.”

Validation of Land Cover Classification. We validated classified land
cover maps by visually interpreting high-resolution (0.6 m?)
Quickbird imagery and identifying points falling into one of the
nine land cover classes. These points were selectively chosen on
the basis of extensive global positioning system (GPS) land cover
ground truth data collected in 2007-2008 and overlaid on
Quickbird imagery in ArcGIS.

We generated confusion matrices to calculate the overall ac-
curacy (po), the proportion of the total number of predictions
that were correct, and the more conservative kappa coefficient
(k), which takes into account agreement occurring by chance (22,
23). On mineral soils, comparison between the 2007 classified
Landsat image and points (n = 271 points) selected from 2007
Quickbird imagery (~640 km?, July 1 and Oct 17, 2007) yielded
po = 0.63 and k = 0.57. On peat soils, comparison between the
2008 classified Landsat image and points (n = 110) selected from
2009 Quickbird imagery (~220 km?, July 9, 2009) yielded po =
0.78 and k = 0.72.

Analysis of Land Cover. For presentation of land cover and carbon
flux results, low- and high-intensity logging land cover classes and
burned/cleared and bare soil/built classes were clumped into single
classes (“logging” and “burned/cleared and bare”). However, they
were treated as separate classes in the land cover change and
carbon bookkeeping models.

0il Palm Lease Records and Planting Lag Analysis. To assess the
process of oil palm development, we obtained provincial West
Kalimantan oil palm concession maps (“oil palm leases”) for 2008
(24). We compiled regional government data on lease allocation
from 2004 to 2011 (25-30). To analyze latency between the initi-
ation of lease allocation and planting, we calculated the number of
years between the first official record of lease request (“Informasi
Lahan”) and land clearing recorded from Landsat data. We were
able to obtain these data for 14 of the 16 companies with active
clearing and planting by 2008.
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Geographic Information Systems (GIS) Data. Beyond oil palm lease
records, our analysis included a variety of spatial datasets. Peatland
coverage generated by RePPProT was modified to reflect validated
peatland within the study area (7). Protected areas were compiled
from the West Kalimantan spatial plan [Rencana Tata Ruang
Wilayah Propinsi (RTRWP)] (31) and were supplemented with
“designated protected areas” from the World Database of Pro-
tected Areas (32) and a map provided by the Gunung Palung
National Park Office. Administrative boundaries were derived
from the 2003 Potensi Desa economic survey (33).

Carbon Bookkeeping Model. A carbon (C) bookkeeping model
implemented in Dinamica EGO accounted for changes in
aboveground live biomass (AGB) (tC-ha™") and peat soil organic
carbon (PSOC) (tC-ha™"). Net carbon flux from time t1 to time t2
was calculated as follows, with positive values indicating net car-
bon emissions and negative values representing net carbon se-
questration:

Facs = (AGBy — AGBy,) [S1]
Frsoc = (PSOCy — PSOCp) [s2]
FroraL = Fags + Fpsoc- [S3]

F is net C flux (tC-ha™"), AGB is AGB of land cover (tC-ha™"),
and PSOC is peat soil organic C (tC-ha™").

Net carbon flux fromland cover change hasbeen quantified using
two distinct approaches (34). First, an annual balance calculation
considers the balance of carbon entering and leaving the system
each year and is the method required under the Kyoto Protocol.
Second, a net committed emissions method accounts for the net
carbon flux as a system enters a new equilibrium following a shift in
land cover. Here, we assumed that all AGB pool carbon is emitted
during the year of burning or clearing, but calculated soil carbon
flux and sequestration from forest regrowth annually. Thus, we
used a hybrid annual balance/net committed emissions approach.

Our carbon bookkeeping model attributed carbon flux only to
detectable land cover transitions. For example, if an intact forest
pixel was cleared for oil palm, emissions generated from clearing
intact forest were ascribed to oil palm. However, if the same intact
forest pixel was logged at time ¢ and cleared for oil palm at time
t + 1, only carbon lost from clearing logged forest was ascribed
to oil palm.

Aboveground Live Biomass. We quantified AGB stocks on the basis
of a combination of land cover (i.e., intact forest, logged forest,
secondary forest, agroforest, oil palm, burned/cleared, bare), ele-
vation (i.e., <300 m asl, >300 m asl), soil type (i.e., peat or mineral
soils), and land cover age. We used a standard carbon fraction (0.5)
to convert dry biomass to C (35). Unless otherwise noted, error is
reported as +1 SD. Initial AGB inputs were iteratively modified on
the basis of observed land cover transitions (Table S2).

Intact forests. Because forest AGB generally declines with in-
creasing elevation, we partitioned mineral soil forests into two
altitudinal classes: <300 m asl (lowland) and >300 m asl (upland)
(3, 36). For lowland forests, we used published AGB estimates
collected in the Ketapang study region from alluvial soils (401 +
146 tC-ha’l); for upland forests, we used estimates from granitic
soils (292 + 101 tC-ha™") (1). For intact peatland forests, we used
AGB estimates (180 + 108 tC-ha™') from Sumatra and Kali-
mantan (37, 38), compiled by Murdiyarso et al. (39).

Both net carbon sequestration and net carbon emissions have
been measured in forests without recent history of anthropogenic
disturbance (40-42). In Ketapang, intact forests were estimated
to be sequestering carbon at ~1.76% AGB-.y™' (1). However,
disturbance rate and magnitude limit biomass accumulation at
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the forest stand level; our land cover change model, by in-
corporating forest degradation, accounts for such changes. Given
the lack of consensus on intact forest carbon dynamics, as well as
the inclusion of forest disturbance and regrowth dynamics in our
land cover change model, we applied 0% aboveground biomass
increment (ABI) (tC-ha™"-y™") for intact forests.

Logged forests. To account for the influence of initial AGB on
postdisturbance AGB, we calculated AGB loss from logging as the
fraction of predisturbance forest biomass (43, 44). No distinction
was made according to substrate; mineral and peatland forests
were assigned identical proportions of AGB loss. Much forest
degradation in Kalimantan is due to mechanized logging and to
a lesser extent to understory forest fires and “illegal” logging (2,
9, 45, 46). We used AGB losses measured in mechanically logged
forests to represent heavy logging and losses measured in illegally
logged forests to represent low-intensity logging.

To estimate biomass in “low-intensity logged” forests, in 2007—
2008 we measured AGB in Gunung Tarak Protected Forest
(Hutan Lindung), a region with active illegal logging during that
period. We measured DBH and height of all trees >10 cm di-
ameter at breast height (DBH) in 153 circular plots with 15-m
radius (11-ha sample), covering ~16 km? in both 2007 and 2008. In
2007, 9 plots had no evidence of logging (no commercial size
stumps >29 cm DBH), but incurred logging activity before the
2008 remeasurement. To calculate the biomass lost from these 9
plots, we applied a moist forest allometric equation (47), in-
corporating height (meters), DBH (centimeters), and wood-spe-
cific gravity (g/cm’). Remaining AGB 1 y after logging averaged
194 + 116 tC-ha™!, representing ~30% loss of AGB from selective
nonmechanized illegal logging.

To estimate AGB in “high-intensity logged” forests, we applied
biomass measures collected from 1991-1992 in a timber conces-
sion in Ketapang District (48). In this commercial concession,
remaining biomass 1 y postlogging averaged ~124 tC-ha™, rep-
resenting ~41% of AGB before timber harvest. Thus, we applied
a 60% biomass loss to high-intensity logged forests, similar to the
estimated range of biomass lost from logging reported in studies
across Asia (49).

Secondary forests. In regrowing logged forests, ABI is positively re-
lated to the basal area of residual trees (43). Postdisturbance bio-
mass recovery may thus be represented as percentage of AGB
rather than absolute ABI. The relationship between AGB and ABI
is nonlinear, and high mortality during the first few years post-
disturbance may offset biomass accumulation (43, 50, 51). How-
ever, AGB begins to accumulate as tree mortality in these forests
returns to nonanthropogenic rates; in logged forest stands in
northeastern Borneo, AGB would require >120 y to reach pre-
logged levels (52). To initiate our carbon bookkeeping model,
secondary forests were assigned the same AGB as high-intensity
logged forests. To account for carbon sequestration from secondary
forest regrowth, we used an annual recovery rate of 1.80 + 0.93% of
AGB, as measured in northern Borneo 18 y after logging (53).
Agroforests. The agroforest land cover class includes land uses as
diverse as rubber gardens, wet rice fields, upland dry rice fallows,
and coconut groves. Factors such as tree stocking densities, fallow
period, and number of farming events influence AGB within each of
these subclasses (14, 54, 55). We were unable to account for bio-
mass variations among these classes because spectral and spatial
resolution of Landsat imagery cannot discern these often small (~1
ha-parcel™") and spectrally similar patches.

Instead, agroforest AGB was calculated from equations relating
AGB with land cover age on the basis of the dynamics of dry rice
fallows, one of the dominant managed land covers in this region
(10). To develop a relationship between fallow age and AGB, we
sampled 31 sites ranging from age 5y to 39y in Kembera, a village
within the study region (14). Sampling was conducted from 1993 to
1996 in sites concentrated in an area of ~3 x 3 km. Two sampling
regimes were applied. For 24 of the sites a 0.1-ha plot (20 x 50 m)
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was randomly located within the fallow. For 7 of the sites, 0.3 ha
(four 30 x 25-m plots) was sampled following methods described
in Lawrence (14). In each plot, DBH of all trees >10 cm was
measured. Stem AGB was calculated as described in Lawrence
(14), using relationships developed by Hughes et al. (56) and
Brown et al. (57). Linear regression yielded mean and 95% con-
fidence interval relationships between agroforest age and AGB
(n = 31,7 = 0.72). Initially, agroforests were divided into two age
classes (young, <10y; and mature, >10 y postclearing) on the basis
of their spectral properties. For young agroforests, age was as-
sumed to be zero. All mature agroforests were assigned the lowest
age (10 y) in this range, so that initial AGB for these mature
agroforests was 22 + 8 tC-ha™'. This assumption potentially un-
derestimates carbon stocks in the agroforest land cover class.
However, as the core component of a swidden farming system these
mature agroforests are subject to periodic reclearing (e.g., refs. 58
and 59), limiting the total biomass stored in this agroforest mosaic.
0il palm. Oil palm AGB was estimated from age-biomass equa-
tions developed from measurements of 3- to 30-y oil palm in
Kalimantan and Sumatra (60, 61). Regression analysis yielded
mean and 95% confidence interval relationships between oil
palm age and AGB (n = 15, /* = 0.56).

Burned and cleared lands. Burned/cleared as well as bare soil/built
area classes were assigned 0 tC-ha™! AGB.

Belowground Carbon. Undisturbed peat soils that maintain acidic
and anaerobic conditions are net carbon sinks, but become carbon
sources through peatland draining or burning (62-64). Peat soil
accumulation rates are estimated at ~0.5-2 mm-y~' in undisturbed
organic peat soils (65, 66). Given the relatively brief 32-y period
modeled here, carbon sequestration from peat accumulation
(0.6-1.2 tC y™') is negligible compared with carbon emissions
from peatlands (16 tCy " in drained peat soils or 203 tC in a single
burning event), and thus peat accumulation was excluded from our
carbon sequestration estimates. We account only for losses of peat
soil organic carbon (tC-ha™") from peat burning and oxidation:

PSOC,, = VCD (Dtl _DBURN) -0 (t2 - tl). [S4]

PSOC is peat SOC (tC-ha™), VCD is volumetric C density
(tC-ha™'m™), D is peat depth (meters), Dgyry is depth of peat
burned (meters), and O is emissions from oxidation of drained
peat (tC-ha=t.y™1).

Peat depth map. To estimate peat depth across the study region, we
constructed a multiple linear regression model predicting peat
depth from Landsat reflectance and elevation data. In 2005, peat
depth was measured at 152 points spaced every 1 km across 2 x 23-
km transects in the Sungai Putri peat area located within the study
region. These measurements generated 4.5 + 2.3 m mean peat
depth. Depth samples were stratified by land cover superclass,
forest (i.e., intact, logged, or secondary forest) and nonforest (i.e.,
agroforest, burned/cleared, or bare soil), in 1989 and 2005. To
ensure peat depth did not change as a result of deforestation and
drainage, the dataset was subset to samples remaining in the same
superclass in both years (n = 117). Using peat depth as the de-
pendent variable and 1989 Landsat reflectance bands (1-5, 7) and
elevation (meters asl) as independent variables, we tested linear
combinations of these variables to predict peat depth. The model
best estimating peat depth (n = 117, r* = 0.53) is:

0.287 + (0.0102) B2 + (—0.00436) B5 + (0.217)E.  [S5]

B2 is Landsat reflectance band 2, B5 is Landsat reflectance band
5, and E is elevation.

We applied this model to the 1989 reflectance image, con-
straining peat depth to 0-10 m and using Delaunay triangulation
in ENVI 4.7 to fill no-data pixels occurring within peat areas
(18). Peat depth maps were used to account for residual carbon
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stocks in organic peat soils; when burn depth or decrement due
to carbon emissions from peat draining exceeded peat depth,
a pixel was assigned a depth of zero and was no longer able to
emit carbon from burning or draining.

Peat soils—volumetric carbon density calculation. Volumetric peat
carbon density is the product of bulk density (BD) (t-m~) and
peat carbon content (CC) (%). In intact peat forests, BD and CC
vary spatially with peatland type, yet display a relatively narrow
range of values throughout the Indonesian archipelago (63, 67—
69). Nonforest lands may have elevated BD due to compaction
(70); yet for this study we assume equivalent volumetric peat
carbon density across all land cover classes. We parameterize our
assessments with data collected in Kalimantan and Sumatra,
compiled by Shimada et al. (68). These measurements (n = 6
forest types) yield a CC of 55.93 + 1.79%, with mean bulk
density of 0.110 + 0.021 t-m™>, generating volumetric peat car-
bon density of 480-757 tC-m~"ha™".

Peat soils—burning. Peat depth loss from burning in Central
Kalimantan has been observed at ~0.33 + 0.18 m (71); emissions
are calculated accordingly for burned peat (Table S3) (68).
Peat soils—draining. Peat soil emissions increase with drainage
depth, which in turn is determined by land cover (72). However,
drainage depth within a single land cover class is variable; thus
for all drained peatlands (i.e., agroforests and agricultural fal-
lows, burned/cleared, bare soil, and oil palm?, we applied a single
carbon emission rate of 15.89 + 3.07 tC-ha™'-y~! calculated from
closed-chamber CO; flux studies in Borneo and Sumatra (Table
S4) (38, 64, 73-75). Nonforested peat depth was decremented 2—
4 cm-y~!, equivalent to the carbon emission rate above, to ac-
count for this loss of carbon.

Carbon Accounting, 1989-2008. Because of >1-y intervals in the
1989-2008 land cover change model, we made several informed
assumptions to assign t1 and t2 for carbon bookkeeping pur-
poses. In the AGB pool, all transitions were initiated at the
beginning of the time interval. Peatlands were assumed to burn
only once per interval. Peatlands transitioning from “undrained”
to “drained” were assumed to be drained halfway through
a given interval. For example, in the 2005-2007 interval, peat-
lands transitioning from intact forest in 2005 to oil palm in 2007,
emissions from the peat draining pool accrued starting in 2006.
Because initial oil palm development in the study region oc-
curred in 1994, draining emissions for undrained peatlands
transitioning to oil palm from 1989 to 1996 were initiated in
1994. For the future carbon bookkeeping model, all land cover
change and commensurate carbon emissions were assumed to
occur at the beginning of an annual interval.

Land Cover Change Model. We modeled land cover change in
Dinamica EGO, an environmental modeling platform that allows
spatially explicit simulation of landscape dynamics (76). Our
model incorporates oil palm expansion as well as non oil palm
land cover change.

Land cover change 1989-2008. In the historic land cover change
model, two dynamic spatial model inputs were used: cell age and
peat depth. Three static spatial model inputs were applied:
classified land cover, elevation, and distance to village. For carbon
accounting purposes, all land cover ages were initially zero, except
>10-y agricultural fallows, conservatively assigned the lowest age
(10 y). In 1989 at the onset of remote sensing analysis, no oil
palm plantations were present, so initial oil palm age estimation
was unnecessary. On the basis of land cover transitions observed
between successive images, for each image date the model cal-
culated (i) land cover age, (if) peat depth, (iii) aboveground and
belowground carbon stocks, (iv) cell age, and (v) carbon flux
from each carbon pool.

Future land cover change 2008-2020. Dinamica EGO uses a Bayesian
weights-of-evidence (WOFE) method to derive spatial proba-
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bilities identifying the most likely areas for land cover transitions
(76). Transition matrices specify the proportion of cells that
change from one class to another per time step. Then, a local
cellular automaton, comprised of customizable Expander and
Patcher functions, expands, contracts, or forms new patches of
a given land cover class according to cell transition probabilities.
Because ENSO events precipitate drought and late onset of rains
in Borneo, facilitating fires and commensurate deforestation with
associated carbon emissions (12, 77), we derived transition ma-
trices from the 1996-1997 period to represent ENSO years and the
2007-2008 period to represent non-ENSO years. Climate records
indicate that ENSO events occur every 2-7 y, with a recent peri-
odicity of 5.3 y (78, 79). Our model applied ENSO transition
matrices every 5 y starting with the 2009 ENSO event (i.e., 2009,
2014, 2019); other years used non-ENSO transition matrices.
Land cover transitions were constrained so that all forest-to-
agroforest transitions passed through a burning/clearing stage.
Agroforests were prevented from recovering to become natural
forests. Transition matrices and WOFE were derived separately
for mineral soil and peatland regions. All land cover change was
modeled from transition rates and WOFE except oil palm
plantation expansion.
0il palm expansion. Predicting plantation establishment rate and
location is difficult. Diverse sociopolitical and economic factors
alter the opportunity cost of land use, onset of plantation oper-
ations, and rate of company clearing and planting. Developers
wishing to acquire land for plantation agriculture in Indonesia
must follow a complex process potentially including approaching
the Bupati and/or provincial Governor, an environmental impact
assessment, rezoning of land in the forest estate, negotiations with
local communities, and concession boundary surveys. These steps
must be completed before a 25-y Hak Guna Usaha (HGU, cul-
tivation rights) certificate is issued to the developer (80).
Weights of evidence. WOFE are calculated on the basis of the as-
sociation among land cover transitions and spatial evidence layers
(e.g., the relationship between a transition from intact forest to
burned/cleared and distance to oil palm) (76, 81). Because WOFE
maps are assumed to be spatially independent, we used a suite of
statistical measures (e.g., Cramer’s contingency coefficient) pro-
vided in Dinamica to calculate the correlation between input
maps. We discarded highly correlated maps, yielding 11 maps
suitable as independent evidence layers. These layers consisted of
continuous dynamic (i.e., age, distance to deforestation, distance
to logging, distance to nonforest, distance to oil palm, peat depth,
and travel cost) continuous static (i.e., distance to towns, eleva-
tion, slope), and categorical static (PA) layers. Here, nonforest
refers to agroforest, burned/cleared, oil palm, and bare soil
classes. For certain land cover transitions, WOFE for layers with
no bearing on transition likelihood were removed (e.g., slope was
not used in determining the location of peatland transitions be-
cause peatlands are located in relatively flat lowland basin
drainages). WOFE were derived from the 2007-2008 time step
and were calculated separately for mineral soil and peatland
regions because of different land cover change dynamics in these
two ecotypes.
Patch geometry calibration. Spatial patterns of change in Dinamica
EGO are produced with a cellular automaton composed of two
transition functions, Expander and Patcher. Each process forms
patches in a variety of shapes and sizes on the basis of mean patch
size, patch size variance, and patch isometry (82). To calibrate
Expander and Patcher, we analyzed the 2007-2008 time step to
derive patch size mean and variance for all transitions. We mod-
ified transitions to the burned/bare class to simulate the tendency
of fire to spread from previously burned areas (mean burned/bare
patch size 10 ha in the Expander function) and also augmented
new burned/bare patch mean area and variance (mean burned/
bare patch size 1-5 ha in the Patcher function). These values were
used to calibrate Patcher and Expander transition parameters.
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Patch isometry, which ranges from 0 to 2 with higher values being
more isometric, was set to 1.0 for all transitions in both Patcher
and Expander. For most transitions, 50% of change was allocated
to the Patcher function with the remainder allocated to Expander.
For transitions to fire, 70% of change was allocated to the Ex-
pander function.

Travel cost surfaces. Travel cost—the economic cost of moving from
one point to another on a landscape—is one of the spatial de-
terminants of land cover change (83, 84). Thus, one of the spatial
layers used to derive probability maps in the land cover simulation
model was travel cost to regional ports. Travel cost depends on trip
length as well as the difficulty, or friction, of traveling that dis-
tance; lower friction values indicate less costly travel. Inputs to
travel cost calculations were maps of land cover, roads, rivers, and
ports. Road maps were developed by digitizing roads from each
Landsat image in the time series. Future road maps were simu-
lated using a road-building module in Dinamica EGO, which ex-
tends unpaved roads from existing roads into newly planted oil
palm areas (85). River maps were created by digitizing rivers vis-
ible in Landsat reflectance imagery. We identified coastal ports at
major cities (Ketapang and Sukadana) as well as one port on an
island (Maya Karimata) as travel destinations. Friction surface
maps were created by assigning paved roads and rivers a friction
value of 1, nonpaved roads a value of 10, and logging roads a value
of 20. Intact forests were assigned a friction value of 500; logged
and secondary forests, values of 400; agricultural fallows and
cleared/burned areas, values of 200; and oil palm and bare soils
areas, values of 100. On the basis of the friction surface maps and
port locations, travel cost was calculated in Dinamica EGO using
the “Calc Cost Map” function.

Carbon sensitivity analysis. To offer uncertainty bounds on carbon flux
from land cover change, we calculated carbon flux using mean, low,
and high carbon input values for AGB, carbon emissions from
oxidation of drained peat (tC-ha™), peat depth loss due to fire
(meters), and peat volumetric carbon density (tC-ha™"-m™"). The
three (mean, low, and high) carbon scenarios were applied to the
historic time series as well as future land cover change scenarios.
In the historic land cover results, carbon flux from minimum and
maximum carbon inputs is presented as model error, whereas in
each scenario, mean, minimum, and maximum values were gen-
erated from the mean of 20 model runs with mean, minimum, and
maximum input values.

Land cover change model validation. We validated our model by
comparing actual change from 2005 to 2007 with modeled change
from 2005 to 2007. We excluded transitions to oil palm from these
comparisons, as oil palm plantation establishment location within
oil palm lease areas is impossible to predict without information
garnered from government officials or company representatives.
Simulated maps inherit the spatial pattern of the initial landscape
map; to control for this effect, we assessed only differences between
the two maps. The validation uses a reciprocal fuzzy comparison
test, using a decay function to examine how window size (1 x 1 cell
or 100 x 100 m to 11 x 11 cells or 1,100 x 1,100 m) affects fitness
(76, 86). Applying a linear decay function in the fuzzy reciprocal
validation, fitness increased from 25% at a 1 x 1 resolution to 81%
at 11 x 11 cell resolution. Applying an exponential decay function
atan 11 x 11 cell resolution generated a mean minimum similarity
index of 0.49. Thus, although our model does a poor job of pre-
dicting cell-by-cell change, predictive power within the 11 x 11 cell
neighborhood is high (81%).

Potential Sources of Uncertainty. Canopy gaps in disturbed forests
rapidly regrow to spectrally resemble nondisturbed forest; thus
accurate forest degradation and logging detection requires an
annual time series of cloud-free images, unavailable for this re-
gion. Although the frequency of image acquisition in this study
(1-7 y) detects most forest disturbance, especially for longer
intervals between images (e.g., 1989-1996), our measures likely
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underestimate secondary forest and as a result overestimate in-
tact forest cover.

Water tables in forested areas may be lowered by nearby
draining, road construction, or burning, making such peat forests
net sources of carbon to the atmosphere (87). By assuming no
emissions from peat forests adjacent to drained peatlands, we
underestimate carbon emissions from forested peatlands.
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(A and B) Land cover distribution (% area) across peat and mineral soils, 1989-2008 and projected through 2020 under five oil palm expansion

scenarios. (i) Business-As-Usual (BAU) oil palm plantation expansion into allocated oil palm leases; a moratorium on oil palm expansion into (i) intact (Mint) or
(iii) intact, logged, and secondary (MSec) forests and peatlands in plantations established from 2012 to 2020; forest protection, identical to the moratorium
scenarios with additional protection given to (iv) intact (FPInt) or (v) intact, logged, and secondary (FPSec) forests in oil palm leases and protected areas from
2011 to 2020. From 1989 to 2008, values were calculated from classified Landsat images. For scenarios, land cover distribution in 2020 was calculated as the
mean of 20 model runs per scenario. Int., intact forest; Log., logged and secondary forest; Ag., agroforests and agricultural fallows; B/B, burned/cleared and
bare; OP, oil palm plantations.
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Fig. S2. (A-H) Mean annual carbon flux (MtC-y”) from all land covers for 1989-2008 and future scenarios 2008-2020 by substrate and pool. Positive values
indicate net carbon emissions to the atmosphere, whereas negative values indicate net carbon sequestration. Error bars specify minimum and maximum mean
annual estimated carbon flux derived by applying low carbon and high carbon input values. Low, mean, and high values represent the mean of 20 model runs
per scenario with low, mean, or high carbon inputs.
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Fig. S3. (A-G) Mean annual carbon flux (MtC-y~") from oil palm for 1989-2008 and future scenarios by substrate and flux component. Positive values indicate
net carbon emissions to the atmosphere, whereas negative values indicate net carbon sequestration. Error bars specify minimum and maximum mean annual
estimated carbon flux derived by applying low carbon and high carbon input values. Low, mean, and high values represent the mean of 20 model runs per
scenario with low, mean, or high carbon inputs.

Table S1. Annual forest degradation (logging) and deforestation rates (%-y~") from 1989 to 2008

Transition Substrate 1989-1996 1996-1997 1997-2001 2001-2005 2005-2007 2007-2008 1989-2008
Degradation, logging Mineral 1.9 16.6 3.7 4.5 33 8.2 4.1
Peat 1.4 14.0 4.2 43 9.0 13.7 47
Overall 1.6 15.1 4.0 4.4 6.7 11.6 45
Deforestation Mineral 2.7 13.8 2.4 3.1 5.4 3.1 3.6
Peat 2.5 5.4 2.8 0.8 2.5 2.3 2.3
Overall 2.5 9.0 2.6 1.8 3.6 2.6 2.9
Oil palm 0.1 0.4 0.1 0.0 0.5 0.7 0.2

“Degradation” is defined as any transition from intact forest to logged forest or secondary forest and any transition from secondary
forest to logged forest. “Deforestation” is defined as any transition from intact, secondary, or logged forest to any other class (i.e.,
agroforest, burned/cleared, bare soil, or oil palm). The 1989-2008 rates were calculated as the mean of weighted rates for each period.
Deforestation from conversion to oil palm plantations (“Oil palm”) is a compilation of all transitions from intact, secondary, or logged
forest classes to oil palm. Rates were derived by applying a compounding equation.
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Table S3. Net carbon emissions generated from peatland burning

Variable Mean Low High
Peat depth, m 0.15 0.51
Peat bulk density, g-cm™3 0.09 0.13
Peat C content, % 56 54 58
Volumetric C density, tCm™3 0.05 0.08
Peat C density, tCha™"-m™" 615 480 757
C loss from fire, tC-ha="-burn™’ 203 72 386

All values are derived from data collected in Sumatra and Kalimantan by
Shimada et al. (68) except burn depth, measured by Ballhorn et al. (71).
Mean, low, and high input values offer bounds on carbon flux estimates
from land use change.

Table S4. Net carbon emissions (tC ha™ yr") from drained peatlands

Land Cover Location C Emissions Source
Agriculture Jambi 21.00 (38)
Agriculture (Cassava) Jambi 17.45 (64)
Agriculture (Wet Rice) Central Kalimantan 15.40 (73)
Agriculture (Wet Rice) South Kalimantan 13.98 (74)
Agriculture (Sago) Sarawak 11.10 (75)
Burned/Cleared Jambi 16.91 (38)
Oil Palm Sarawak 15.40 (75)
Mean + SD 15.89 = 3.07

Peat emissions depend on drainage depth, which varies within and between land cover classes. Thus, for all
non-forested peatlands (i.e., agroforests and agricultural fallows, burned/cleared, bare soil, and oil palm) we

calculated the mean emission rate from closed-chamber CO, flux studies in Borneo and Sumatra.
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