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a b s t r a c t

The range-wide habitat status of many endangered species is unclear. We evaluated the status and spatial
distribution of the habitat of the endangered giant panda (Ailuropoda melanoleuca) across its entire geo-
graphic range (i.e., six mountain regions located in Sichuan, Shaanxi and Gansu provinces, China) by inte-
grating field and remotely sensed data to develop a habitat distribution model. Results suggest that
current suitable habitat corresponds to ca. 1/4 of the habitat baseline (i.e., maximum amount of habitat
possible). The highest proportion of suitable habitat relative to the baseline is in the Qinling mountain
region. Overall, around 40% of the suitable habitat is inside nature reserves, but the proportion of habitat
inside them varied among different mountain regions, ranging from ca. 17% (Lesser Xiangling) to ca. 66%
(Qinling). The habitat model also predicted the occurrence of potentially suitable habitat outside the cur-
rently accepted geographic range of the species, which should be further evaluated as potential panda
reintroduction sites. Our approach is valuable for assessing the conservation status of the entire habitat
of the species, for identifying areas with significant ecological roles (e.g., corridors), for identifying areas
suitable for panda reintroductions, and for establishing specific conservation strategies in different parts
of the giant panda geographic range. It might also prove useful for range-wide habitat analyses of many
other endangered species around the world.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

As many species are now facing unprecedented reductions in
habitat availability due mainly to human actions, range-wide hab-
itat analyses are becoming a necessity, particularly for endangered
species and across political boundaries (Sanderson et al., 2002;
Thorbjarnarson et al., 2006). Such analyses allow the identification
of areas that require different conservation actions (e.g., establish-
ment of new nature reserves, corridors and species reintroduction
sites). However, for many threatened and endangered species the
information regarding specific habitat characteristics and distribu-
tion across their entire geographic ranges is often inadequate
(Odom et al., 2001). This is the case of the endangered giant panda
(Ailuropoda melanoleuca), which is considered a global icon of bio-
diversity conservation (Liu et al., 2001; Loucks et al., 2001; Mack-
innon and De Wulf, 1994).

Giant pandas once ranged throughout most of China, northern
Vietnam, and northern Myanmar (Pan et al., 2001), but fewer than
ll rights reserved.
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1600 individuals in the wild are estimated to survive within six
mountain regions (Qinling, Minshan, Qionglai, Greater Xiangling,
Lesser Xiangling and Liangshan) in three provinces (Gansu, Shaanxi
and Sichuan) of China (Hu and Wei, 2004; Mackinnon and De Wulf,
1994; Reid and Gong, 1999; State Forestry Administration, 2006)
(Fig. 1). The drastic reduction in the geographic distribution of
the species is mainly attributed to human activities [e.g., agricul-
tural expansion, logging, infrastructure development, and residen-
tial development (Liu et al., 2003a)]. This has prompted the
Chinese government and international non-governmental organi-
zations to invest in the establishment of 63 giant panda nature re-
serves (protected areas specifically designed to conserve the
species). As panda populations inside many of these nature re-
serves tend to be isolated (Viña et al., 2007; Xu et al., 2006), it is
necessary to establish conservation blocks that integrate several
nature reserves and enhance the habitat connectivity among them.
However, giant panda habitat analyses have been performed
mainly inside nature reserves (Linderman et al., 2005; Liu et al.,
1999, 2001, 2005; Viña et al., 2007, 2008) or within single moun-
tain regions (Feng et al., 2009; Loucks et al., 2003; Shen et al.,
2008; Xu et al., 2006) and often using different criteria for charac-
terizing the habitat of the species. Therefore, an analysis of the
habitat status and distribution across the entire geographic range
of the species is warranted.
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Fig. 1. Topographic map showing the location of the mountain regions currently inhabited by giant pandas (Hu and Wei, 2004; Mackinnon and De Wulf, 1994; Reid and Gong,
1999; State Forestry Administration, 2006). Also shown are locations of the 540 field sampling plots established for this study with 84 of them exhibiting evidences of the
occurrence of giant pandas (i.e., tracks, feces, dens, sleeping sites), together with 34 plots established outside the mountain regions for model verification.
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In this study we quantified the habitat of the giant panda across
its entire geographic range. Our specific objectives were to estab-
lish the areal extent of the habitat, assess the degree of habitat con-
nectivity, evaluate the amount of habitat inside 63 giant panda
reserves, and identify potential sites for locating new nature re-
serves, corridors and reintroduction sites.
2. Methods

2.1. Study area

The study area (ca. 125,170 km2) was defined by the six moun-
tain regions currently inhabited by giant pandas (Fig. 1). These
mountain regions are characterized by high mountains and deep
valleys, with elevations between ca. 70 and 6250 m. Together with
this strong elevational gradient there is high variation in climate
and soils that leads to diverse flora and fauna. One of the world’s
top 25 Biodiversity Hotspots is included in the region, the South-
west China hotspot (Mittermeier et al., 2004; Myers et al., 2000).
Natural vegetation is dominated by evergreen and deciduous
broadleaf forests at lower elevations and subalpine coniferous for-
ests at higher elevations. The dense understory of these forests is
dominated by ca. 60 bamboo species, with approximately 35 of
them being the preferred food of giant pandas (Hu and Wei,
2004; Li, 1997).
2.2. Habitat distribution model

2.2.1. Modeling approach
Models that predict the spatial distribution of the habitat of tar-

get species have generated great interest in recent years, as they
help not only in the prediction of the locations of suitable habitat,
but also aid in understanding niche requirements (Guisan and Thu-
iller, 2005). These models relate observations of the occurrence of
the target species with environmental variables in order to estab-
lish the suitability of an area to meet the biological requirements of
the target species. Many such models require information on the
areas that exhibit both confirmed presences and absences of the
target species. While the presence of the target species can be
determined through direct observation or through the use of surro-
gates (e.g., fecal droppings), information on confirmed absences is
more difficult to obtain. This is particularly true for vagile species
with small population sizes, such as the giant panda, because the
absence of individuals in a particular place does not necessarily
mean that it is unsuitable habitat. Therefore, models specially de-
signed for presence-only data have been developed in recent years
(Hirzel et al., 2002; Phillips et al., 2006; Stockwell and Peters,
1999).

Several studies that compared the performance of different
presence-only models have found that MaxENT, a general pur-
pose machine-learning method for making predictions from
incomplete information, constitutes one of the most accurate
algorithms, particularly when using a small number of occurrence
locations (Elith et al., 2006; Hernandez et al., 2006; Pearson et al.,
2007; Phillips et al., 2006). Therefore, we used MaxENT as the
modeling framework for mapping the spatial distribution of giant
panda habitat. MaxENT estimates the probability of an area to be
suitable habitat for the target species, by finding a probability dis-
tribution of maximum entropy (i.e., maximum uniformity) such
that the expected value of each environmental variable matches
its empirical average, defined by known occurrence locations.
The algorithm runs a user-defined number of iterations or until
a convergence limit is reached. The final output is a continuous
habitat suitability index (HSI), ranging from 0 (unsuitable) to 1
(perfectly suitable).
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2.2.2. Giant panda occurrence
The giant pandas are difficult to observe in the wild due mainly

to their small population size in a large geographic area. Therefore,
we used surrogates (i.e., tracks, fecal droppings, dens, sleeping
sites) to determine their occurrence. Among these, fecal droppings
were the most abundant and constituted a straightforward indica-
tor of the occurrence of the species because they are deposited fre-
quently (an average of four droppings/hour) and remain visible for
several months (Schaller et al., 1985). We searched for these surro-
gates in 540 sampling plots (ca. 314 m2 each) distributed through-
out the study area (Fig. 1). To avoid areas where giant pandas are
known to be absent, we concentrated our field sampling efforts
in the geographic areas of each of the six mountain regions where
surrogates of the species have been sighted in the past. Sampling
plots were then distributed randomly within each of these geo-
graphic areas. The selection of geographic areas to randomly dis-
tribute our sampling plots was done with the aid of local guides.
The center of each sampling plot was geo-referenced using a
real-time differentially corrected global positioning system (GPS)
receiver. Each of these plots was visited one time in either Septem-
ber–November of 2004, or in May–July of 2005, 2006 and 2007.
Among the 540 plots surveyed, 84 exhibited evidences of the
occurrence of giant pandas.

Although no giant panda sightings have been reported outside
the six mountain regions comprising the study area in recent dec-
ades, 34 additional field plots were distributed outside them in or-
der to verify if some of these areas constitute potential suitable
habitat. The locations of these verification plots (Fig. 1) were estab-
lished based on the results of the habitat model developed in the
study (see below).

2.2.3. Environmental variables
The phenological characteristics of forest canopies together

with the asynchronous phenologies of forests with and without
understory bamboo have been used for identifying and mapping
the areas that constitute giant panda habitat within a single nature
reserve (Viña et al., 2008). Vegetation phenology has also been
associated with the elevational migration of giant pandas (Beck
et al., 2008). Therefore, we used vegetation phenology, as mea-
sured by a time series of images acquired by the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) satellite sensor system,
as an environmental variable for modeling giant panda habitat.
MODIS time series data were selected not only for their high tem-
poral resolution (i.e., daily acquisition), but also because they cover
vast areas, thus are suitable for analyzing the habitat status and
distribution across the entire geographic range of the species. We
used a time series of 8-day composite surface reflectance data ac-
quired between January, 2004 and December, 2007 (a total of 184
images, 46 for each year) by the MODIS sensor system on board the
National Aeronautics and Space Administration (NASA) Terra satel-
lite (product MOD09Q1 – Collection 5). This geometrically cor-
rected image dataset has surface reflectance values, corrected for
the effects of atmospheric gases, aerosols and thin cirrus clouds
(Vermote et al., 1997), collected in two spectral bands (b1: 620–
670 nm; b2: 841–876 nm) with a pixel resolution of ca.
250 m � 250 m. A time series of the Wide Dynamic Range Vegeta-
tion Index (WDRVI) was calculated from these data using the
formula:

WDRVI ¼ a � qb2 � qb1

a � qb2 þ qb1
ð1Þ

where qb1 and qb2 are surface reflectance values in bands 1 and
2, respectively, and a is a coefficient that down-weights the contri-
bution of the near-infrared band (b2), making it comparable to that
of the red band (b1) (Gitelson, 2004). We selected an a = 0.25 as the
optimum for the MODIS time series dataset used in the study
(Henebry et al., 2004). The WDRVI constitutes a non-linear trans-
formation of the widely used Normalized Difference Vegetation In-
dex (NDVI) and is specifically designed to increase the sensitivity
to changes in vegetation when the NDVI saturates (Gitelson,
2004; Viña et al., 2004). This index exhibits a linear relationship
with the fraction of photosynthetically active radiation absorbed
by vegetation (Viña and Gitelson, 2005) and has been used for ana-
lyzing the spatio-temporal heterogeneity of tropical forests (Agui-
lar-Amuchastegui and Henebry, 2006, 2008).

To reduce the effects of temporal autocorrelation in the WDRVI
image time series a principal component analysis was applied. A
few principal components effectively summarize the dominant
modes of the spatio-temporal variation, therefore retaining most
of the information contained in the image time series (Benedetti
et al., 1994; Eklundh and Singh, 1993; Townshend et al., 1985).
The first 20 principal components retained (explaining ca. 70% of
the total variance) were used as environmental variables. These
variables, together with the locations of the 84 field plots (out of
the 540 sampled) with giant panda occurrences (i.e., with presence
of tracks, feces, dens, sleeping sites) were used in MaxENT. If at
least one field plot with a panda occurrence fell within a MODIS
pixel, the entire pixel was considered as habitat, and used for mod-
el calibration. This constitutes an approximation since a pixel as-
signed as panda habitat would not necessarily be 100% habitat
on the ground as a result of sub-pixel complexity. However, this
procedure is common in many pixel-based imagery classification
methods (Lu and Weng, 2007). As all the 84 field plots with giant
panda evidences were located in different MODIS pixels, 84 pixels
were used for model calibration.

2.2.4. Model validation
To evaluate the accuracy of the habitat model, three validation

procedures were performed using an independent validation data-
set of 1453 giant panda occurrence locations obtained during the
third national panda survey performed between 2000 and 2002
(State Forestry Administration, 2006). As sometimes two or more
of these giant panda occurrences fell within a single MODIS pixel,
a total of 1257 pixels with at least one giant panda occurrence
were used for validation.

The first procedure involves binning the HSI scale and then cal-
culating the frequency of pixels with giant panda occurrences that
fall in each of these bins. This observed frequency is then divided
by the frequency of pixels belonging to the same bin across the
study area (i.e., expected frequency). If the locations used for vali-
dation occur at random, this ratio of frequencies (observed/ex-
pected) is equal to unity. A Spearman-rank correlation coefficient
is then calculated between the ratio of frequencies (observed/ex-
pected) in each bin and the bin rank. A model with high accuracy
should have a high positive Spearman-rank correlation coefficient
(i.e., closer to 1), as more observed giant panda occurrences would
continually fall within higher bin ranks (Boyce et al., 2002). The
main disadvantage of this procedure is that it is sensitive to the
number of bins as well as their boundaries (Boyce et al., 2002).
Therefore, a modification (Hirzel et al., 2006) was implemented
in which the HSI was divided into 100 bins and an observed/ex-
pected frequency was calculated in each shift of a moving window
of 10 continuous bins. Through this procedure, a continuous ob-
served/expected frequency curve was obtained and a Spearman-
rank correlation coefficient [termed Boyce Index (Hirzel et al.,
2006)] was calculated.

The second procedure is the Kappa analysis, which is a chance-
corrected measure of agreement (Cohen, 1960). The Kappa statistic
ranges between 0 and 1 and model accuracy can be judged as
excellent if Kappa > 0.75, good if 0.75 > Kappa > 0.4, or poor if Kap-
pa < 0.4 (Araújo et al., 2005; Landis and Koch, 1977). However, this
validation procedure could not be performed in its traditional
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manner due to the lack of species absence information. Therefore,
we distinguished presence from random, rather than presence
from absence, using two different randomly selected pixel data-
sets. The first dataset [named Background (BG)] consisted of
1000 pixels randomly selected across the entire study area (i.e.,
the six mountain regions inhabited by giant pandas). This was
done in order to evaluate the accuracy of the model for separating
habitat pixels from background pixels. The second dataset [named
Forest (F)] also consisted of 1000 pixels randomly selected across
the study area, but only among pixels with more than 10% tree cov-
er in the MODIS-derived vegetation continuous fields tree-cover
product (Hansen et al., 2003). This was done in order to evaluate
the accuracy of the model for separating habitat pixels from forest
pixels, as not all forest pixels constitute giant panda habitat (e.g.,
forests without understory bamboo). The 10% threshold in the
tree-cover product was selected with the assumption that pixels
with at least 10% tree cover have the potential to be classified as
forest under natural conditions, in order to account for the defores-
tation that has occurred during the last decades (Liu et al., 2001;
Viña et al., 2007). Unfortunately the use of presence/random data
will always give lower Kappa values than those obtained by pres-
ence/absence data because several randomly selected pixels will
fall in areas that have been correctly predicted as suitable habitat
by the model, thus artificially increasing commission errors. There-
fore, the Kappa values obtained in this study will not be fully com-
parable with those of other studies.

The third procedure consists of calculating a receiver operating
characteristic (ROC) curve (Hanley and Mcneil, 1982). The ROC
curve is a plot of the sensitivity values (i.e., true positive fraction)
vs. their equivalent 1-specificity values (i.e., false positive fraction)
for all possible HSI thresholds. The area under the ROC curve (AUC)
is a measure of model accuracy. The AUC ranges from 0 to 1, where
a score of 1 indicates perfect discrimination, a score of 0.5 implies a
prediction that is not better than random, and lower than 0.5 im-
plies a worse than random prediction. A standard for judging mod-
el performance based on AUC values (Araújo et al., 2005; Swets,
1988) is: excellent (AUC > 0.9), good (0.9 > AUC > 0.8), fair
(0.8 > AUC > 0.7), poor (0.7 > AUC > 0.6), and failed
(0.6 > AUC > 0.5). Although presence/absence data are required
for calculating ROC curves, we used the same dataset on presence
pixels and the two random pixel datasets (i.e., BG and F) used for
performing the Kappa analysis to calculate ROC curves. As with
the Kappa analysis, AUC values calculated in this manner tend to
be underestimated because some of the random pixels are actually
presence pixels (Wiley et al., 2003), but a random prediction will
still correspond to an AUC of 0.5 (Phillips et al., 2006).

In order to examine the relative importance of each of the 20
principal components (used as environmental variables) for mod-
eling giant panda habitat we developed a model with each of the
principal components in isolation and then calculated the AUC
using the validation data described above. The principal compo-
nent with the highest AUC value constitutes the most informative
(in isolation) for separating giant panda habitat.

2.3. Habitat status

To evaluate the amount of habitat area and its connectivity in
the different mountain regions comprising the study area, it was
necessary to find an optimal HSI cumulative threshold for separat-
ing the continuous HSI into habitat and non-habitat areas. We se-
lected the optimal threshold as the one that exhibited the
maximum Kappa, when applied to all possible HSI cumulative
thresholds, using the 1257 pixels with a giant panda occurrence
and the 1000 BG pixels obtained randomly across the study area.
For assessing the degree of habitat connectivity, we calculated
the clumpiness index using the software FRAGSTATS (McGarigal
et al., 2002). This landscape metric is related to habitat aggregation
and ranges from zero to one, with values closer to zero indicating a
higher degree of fragmentation and values closer to one indicating
a high degree of aggregation. The most relevant characteristic of
this metric for this study is that it is independent of habitat area
(Neel et al., 2004), making it suitable for comparing the degree of
habitat connectivity in different mountain regions that differ in
the amount of habitat they contain.

Since the different mountain regions have particular topo-
graphic conditions, in order to compare the habitat status among
them we evaluated the predicted suitable habitat in each mountain
region (i.e., as obtained by MaxENT applied to field and MODIS
data) against a habitat baseline condition defined as the maximum
amount of habitat possible (Viña et al., 2007). For this, a map of the
habitat baseline condition was generated using elevation and slope
obtained in lattice format from a digital elevation model acquired
by the Shuttle Radar Topography Mission, which has been shown
to exhibit high elevational accuracy (Berry et al., 2007). Because
giant pandas have particular topographic preferences (Hu and
Wei, 2004; Liu et al., 1999), pixels with slopes 645� and within
an elevational range between 1200 and 3800 m [although varying
these ranges among different mountain regions as shown by Hu
and Wei (2004)] were considered as the topographic baseline. It
should be noted that this baseline could have a potential bias to-
wards higher elevations, since the upper elevation limit in the dis-
tribution of the species is due to physiological constraints while
the lower elevation limit is mainly dictated by human disturbance
(Feng et al., 2009; Schaller et al., 1985). However, it is still suitable
for comparing the habitat status among different mountain re-
gions. To exclude pixels falling within these topographic criteria
but not classified as forest under natural conditions, an additional
restriction was included in which pixels with less than 10% tree
cover, in the MODIS-derived vegetation continuous fields tree-cov-
er product (Hansen et al., 2003), were excluded from the habitat
baseline.
3. Results

The map derived from the giant panda habitat model shows
that suitable habitat is located primarily in the central (Qionglai
mountain region) and northern (Minshan and Qinling mountain
regions) portions of the study area, while the southernmost re-
gion (i.e., comprising Liangshan, Greater Xiangling and Lesser
Xiangling mountain regions) exhibits comparatively lower
amounts of habitat (Fig. 2). This map exhibited high accuracy
using three different validation procedures (Fig. 3), which demon-
strates that the approaches used have utility for evaluating the
habitat distribution of the species. The Boyce Index exhibited a
high positive value, representing a monotonic increase in the ra-
tio of frequencies (observed/expected) as more observed giant
panda occurrences continually fall within higher HSI bin ranks
(Fig. 3A), while the Kappa and AUC values ranged between 0.52
and 0.62 and between 0.83 and 0.89, respectively (Fig. 3B and
C). These values show that the model is good, based on standards
for judging model performance (Araújo et al., 2005; Landis and
Koch, 1977; Swets, 1988), not only for separating habitat pixels
from background pixels across the study area, but also for sepa-
rating habitat pixels from forest pixels. These values are quite
high, considering the fact that the use of random pixels reduces
the Kappa and AUC due to artificial commission errors. In addi-
tion, part of the disagreement between the model output and
the occurrence data obtained from the giant panda survey of
2000–2002 (State Forestry Administration, 2006) could be attrib-
utable to changes in the habitat suitability between validation
and remotely sensed data collection dates.



Fig. 2. Spatial distribution of the giant panda habitat suitability index (HSI) values across its entire geographic range obtained through MaxENT using time series of the Wide
Dynamic Range Vegetation Index (WDRVI) derived from 8-day surface reflectance data acquired in 2004–2007 by the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor on board the Terra satellite (product MOD09Q1 – Collection 5).
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The first principal component, explaining ca. 24.4% of the vari-
ance in the time series of MODIS–WDRVI imagery, contains the
highest information by itself for discriminating habitat from back-
ground pixels (Fig. 4A). The 17th principal component, while
explaining only ca. 0.8% of the image time series variance, contains
the highest information by itself for discriminating habitat from
forest pixels (Fig. 4A). These two components exhibit the highest
correlation with spring WDRVI values, as shown by their loadings
(Fig. 4B). Therefore, this season seems to be the best time for dis-
criminating giant panda habitat. For comparison purposes, the
loadings of the second principal component are also shown in
Fig. 4B. This component represents the annual seasonality of the
vegetation (i.e., highest loadings occur during summer and winter;
Fig. 4B), but while this component explains about 10% of the vari-
ance contained in the image time series, it contains little informa-
tion by itself for discriminating giant panda habitat (Fig. 4A).

A binary habitat/non-habitat map (Fig. 5) was created after
finding the optimal HSI cumulative threshold for separating habi-
tat pixels from background pixels (HSI = 0.03), as determined by
the Kappa analysis (Fig. 3B). This map shows that the remaining
panda habitat inside the six mountain regions currently inhabited
by giant pandas covers an area of ca. 21,300 km2, corresponding to
ca. 17% of the entire study area and ca. 27% of the habitat baseline.
Although the Minshan mountain region exhibits the largest area of
giant panda habitat (around 48% of the entire habitat is located in
this mountain region; Table 1), the Qinling mountain region exhib-
its the highest proportion of giant panda habitat as compared
against the habitat baseline (ca. 45% of the habitat baseline; Table
1). Thus, the status of the giant panda habitat seems to be better in
Qinling than in any other mountain region. In addition, this moun-
tain region also exhibits the highest values of the clumpiness index
(Table 1), suggesting that the habitat present in Qinling exhibits
higher connectivity than the one observed in other mountain re-
gions. The mountain regions of the southernmost portion of the
giant panda geographic range (i.e., Liangshan, Greater Xiangling
and Lesser Xiangling) exhibit not only the lowest absolute and rel-
ative amounts of suitable habitat (i.e., compared against the habi-
tat baseline), but also the lowest clumpiness index values (Table 1).
Therefore, the status of the habitat in these mountain regions is the
poorest in the entire geographic range of the species, in terms of
the amount of habitat present and its degree of connectivity.

Around 40% of the suitable giant panda habitat in the six moun-
tain regions is within nature reserves, but differences among
mountain regions are evident. For instance, while ca. 2/3 of the
habitat in Qinling is inside nature reserves only ca. 17% of the hab-
itat in Lesser Xiangling is inside them (Table 1).

Projecting the model to areas outside the study area (i.e., out-
side the six mountain regions inhabited by giant pandas), we found
that large areas of suitable giant panda habitat occur, particularly
in areas located to the northwest, west and south of the Qinling
mountain region (Fig. 2). Based on the information obtained in
the 34 verification plots (Fig. 1), we determined that some of these
predicted habitat areas outside the six mountain regions poten-
tially constitute suitable habitat, because they are forested, with



Fig. 3. Results of three validation procedures: (A) Boyce Index, (B) Kappa, and (C)
the area under the receiver operating characteristic curve (AUC), calculated using
an independent validation dataset of 1453 giant panda occurrence locations
obtained from the third national panda survey between 2000 and 2002 (State
Forestry Administration, 2006), together with 1000 pixels randomly selected across
the study area (BG), and 1000 pixels randomly selected among pixels classified as
forest (F) [i.e., with more than 10% tree cover in the MODIS-derived vegetation
continuous fields tree-cover product (Hansen et al., 2003)]. Maximum KappaBG and
AUCBG represent the accuracies of the model for separating habitat pixels from
background pixels, while maximum KappaF and AUCF represent the accuracies of
the model for separating habitat pixels from forest pixels.

Fig. 4. (A) AUC values (calculated using the same validation data described in Fig. 3)
of the giant panda habitat model obtained using each principal component [PC;
derived from the MODIS–WDRVI image time series (2004–2007)] in isolation. A
higher AUC value indicates that the PC contains more information for discriminat-
ing habitat from background (BG) or habitat from forest (F) pixels, respectively. (B)
Principal component loadings (which indicate the correlation of each component
with members of the original image time series) of the two PC that exhibited the
highest AUC values when used in isolation (i.e., PC1 and PC17). Loadings of PC2 are
also shown for comparison purposes.
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gentle slopes and contain understory bamboo species such as Bash-
ania fargesii and Fargesia dracocephala, which are suitable for the
giant panda.
4. Discussion

Vegetation phenology, measured through time series of
WDRVI derived from MODIS surface reflectance data, proved to
be a suitable descriptor of giant panda habitat across its entire
geographic range, as shown by the high accuracy of our model
predictions. The season in which the time series of WDRVI con-
tains more information for isolating giant panda habitat seems
to be the spring. Similar results have been reported in which
broadleaf forests with understory bamboo have on average ca.
15.8% higher WDRVI values than broadleaf forests without under-
story bamboo, particularly during the spring (Viña et al., 2008).
Thus, the presence of understory bamboo significantly influences
the vegetation phenology in a way that can be exploited for iso-
lating and mapping giant panda habitat. This constitutes an
improvement over previous synoptic giant panda habitat evalua-
tions in which the presence of understory bamboo was ignored
(Liu et al., 2001; Loucks et al., 2003; Viña et al., 2007) due to
the difficulty in isolating its signal from that of overstory canopy
(Linderman et al., 2004; Wang et al., 2009). However, it is neces-
sary to emphasize that MODIS data are acquired with a relatively
coarse spatial resolution, which is suitable for evaluating the hab-
itat in the entire range of the species, but might not be com-
pletely suitable at smaller scales in localized areas. Therefore,
while the finer temporal resolution of MODIS data can compen-
sate their disadvantage of coarser spatial resolution (Viña et al.,
2008), the results of this study are not directly comparable to
those performed with imagery acquired by sensor systems with
higher spatial resolutions.



Fig. 5. Predicted distribution of suitable giant panda habitat obtained by thresholding the habitat suitability index (HSI) values from the model developed with the time series
of MODIS–WDRVI. The optimal threshold (HSI = 0.03) was selected as the one that exhibited the maximum KappaBG value (see Fig. 3B). Also shown is the distribution of the
habitat baseline, the locations of current nature reserves (as of 2007) and the locations of some areas (A–J) suggested to be included as extensions of current nature reserves,
new nature reserves or corridors for the movement of giant panda individuals among nature reserves or among different mountain regions.

Table 1
Absolute and relative amounts of suitable giant panda habitat in each of the six mountain regions comprising the geographic range of the species. The relative amounts represent
the proportion of habitat baseline currently occupied by suitable habitat and the amount of suitable habitat inside nature reserves. Also shown is the degree of habitat
connectivity in the different mountain regions as measured by the clumpiness index.

Mountain Area (km2) Proportion of baseline habitat area (%) Proportion inside nature reserves (%) Clumpiness index

Greater Xiangling 344.8 8.5 30.2 0.818
Lesser Xiangling 1254.8 18.0 16.9 0.806
Liangshan 1849.7 16.5 46.3 0.858
Minshan 10251.1 27.3 43.9 0.864
Qinling 4996.1 45.3 66.4 0.875
Qionglai 2601.8 30.9 22.2 0.846

All mountains 21298.4 26.9 39.9 0.854
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As satellite-derived vegetation phenology responds to distur-
bances of different origins (Eklundh et al., 2009; Koltunov et al.,
2009; Morisette et al., 2009; Zhang et al., 2004), it might also be
used for evaluating changes in the quality and geographic distribu-
tion of the giant panda habitat induced by natural (e.g., bamboo
die-offs as a result of mass flowering, earthquake-induced land-
slides) and/or human (e.g., land use/cover change, agricultural
expansion, bamboo harvesting) disturbances (Liu et al., 2001;
Mackinnon and De Wulf, 1994; Viña et al., 2007; Wang et al.,
2008). We are currently performing further analyses to establish
the sensitivity of time series of MODIS–WDRVI to such
disturbances.

Since our study analyzed the status of the habitat in the entire
geographic range of the species, it has direct management implica-
tions for the conservation of the entire giant panda population,
particularly regarding initial steps in the design of new panda re-
serves or adjustments to existing ones (Lindenmayer and Burgman,
2005; Noss, 2003). Our results show that there is still a significant
amount of panda habitat outside the current nature reserve system
that needs to be considered when planning nature reserve
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expansions or the creation of new nature reserves. This is particu-
larly true in the Lesser Xiangling and Qionglai mountain regions,
which exhibit low proportions of habitat area inside nature re-
serves. In addition, the current nature reserves are in general small
(Mean = 475 km2 and SD = 586.5 km2) and isolated from others
(Fig. 5) and thus have a limited ability to maintain viable giant pan-
da populations (Loucks et al., 2001). Thus, it is necessary to estab-
lish new reserves or corridors to connect isolated habitat patches
and nature reserves, a common strategy for species conservation
in fragmented landscapes (Beier and Noss, 1998).

The Chinese government has planned to add ca. 180,000 km2 of
land area (2% of China’s territory) to China’s nature reserve system
(Liu and Diamond, 2005; Liu et al., 2003b) between 2010 and 2020.
Thus, opportunities exist to create additional nature reserves for
numerous species including the giant panda, expand current nat-
ure reserves, and create dispersal corridors that increase the con-
nectivity among them. Based on our results, we suggest some
areas (A–J in Fig. 5) as candidates to be included in the expansion
of China’s nature reserve system. While the importance of some of
these areas (B–F in Fig. 5) for connecting suitable panda habitat
within mountain regions has been identified in previous localized
studies (Loucks et al., 2003; Shen et al., 2008; Xu et al., 2006), we
found additional areas that have the potential for connecting hab-
itat among different mountain regions. For example, areas F, G and
H connect habitat patches among Qionglai, Greater Xiangling and
Lesser Xiangling, and area I links habitat between Lesser Xiangling
and Liangshan (Fig. 5).

Besides the fragmented distribution of suitable panda habitat
and its low ratio to the habitat baseline in all six mountain re-
gions, we also found noticeable differences in the status of the
giant panda habitat among mountain regions. These differences
suggest that different conservation strategies and allocations of
conservation resources are required in different mountain re-
gions. For instance, suitable habitat in the Qinling mountain re-
gion corresponds to the highest proportion of habitat baseline
and exhibits the highest connectivity (Table 1). This mountain re-
gion also exhibits the highest amount of habitat inside nature re-
serves. Thus, conservation actions in this mountain region can be
oriented mainly towards minimizing the impacts of humans in
and around nature reserves and alleviate the poverty of the local
people in order to reduce their exploitation of forest products
(e.g., bamboo culms and shoots, fuelwood and mushroom collec-
tion). In contrast, the status of the habitat in the southernmost
portion of the giant panda geographic range (i.e., Greater
Xiangling, Lesser Xiangling and Liangshan) is in jeopardy, as it
comprises the lowest proportions of habitat baseline and exhibits
comparatively lower habitat connectivity (Table 1). Giant panda
populations in these mountain regions are considered threatened
(Hu and Wei, 2004), with only ca. 60 individuals estimated to in-
habit them (State Forestry Administration, 2006). Therefore, in
addition to establishing conservation actions for minimizing the
impacts of humans on these habitat areas, active habitat restora-
tion might also be required in order to link their small and iso-
lated giant panda populations with the larger ones present in
other mountain regions. Consequently, while the areas proposed
in this study for establishing new reserves or corridors have the
potential for linking habitat among Greater Xiangling, Lesser
Xiangling and Qionglai (F, G and H in Fig. 5) and between Lesser
Xiangling and Liangshan (I in Fig. 5), active habitat restoration
(e.g., reforestation and bamboo plantation) might also be neces-
sary in these proposed areas, in order to create suitable habitat
corridors. As nation-wide conservation programs have the prom-
ise to increase forest cover in China (Liu et al., 2008), we suggest
that the managers of these programs in the southernmost moun-
tain regions of the giant panda range consider including active
restoration of giant panda habitat in their operations (e.g., plant-
ing native tree species as opposed to exotic ones, and planting
bamboo species suitable for the giant panda).

The habitat model also predicted large areas of potentially suit-
able habitat occurring outside the six mountain regions (Fig. 2).
Historical reports (Chu and Long, 1983) and Pleistocene fossils
(Zhu and Li, 1980) indicate a much wider distribution of the giant
pandas in the past, which included these habitat areas predicted
outside the six mountain regions. The absence of pandas in these
potentially suitable habitat areas could be due to local extinctions
and out-migrations as a result of bamboo die-offs after mass flow-
ering (Li and Denich, 2004). Perhaps these areas then became iso-
lated due to the increasing human activities in their surroundings
(Li and Denich, 2004; Pan et al., 2001), particularly logging and
agricultural expansion. As species reintroductions are regarded as
feasible management strategies (Richardson et al., 2009), the suit-
ability of these areas to support giant panda populations should be
evaluated in panda reintroduction viability assessments (Guo,
2007; Li and Denich, 2004). Due to the successful breeding of giant
pandas in captivity, the Chinese government has been making ear-
nest efforts to reintroduce them to the wild (Guo, 2007). The
range-wide analysis performed in this study provides a foundation
for identifying potential suitable areas for such panda
reintroductions.

The procedures performed in this study are of special signifi-
cance for establishing an overall view of the status of the entire
giant panda habitat and could potentially be used for analyzing
its changes through time. This allows identifying different conser-
vation strategies to be implemented in different parts of the giant
panda geographic range. As the habitat of this species comprises
several types of forest ecosystems (Reid and Hu, 1991; Taylor
and Qin, 1993) which are also home to thousands of other animal
and plant species, these conservation strategies will also promote
the conservation of other endangered species such as the golden
monkey (Rhinopithecus roxellanae), the takin (Budorcas taxicolor),
the red panda (Ailurus fulgens), the forest musk deer (Moschus ber-
ezovskii), and the Asiatic black bear (Ursus thibetanus). However, it
is important to underline that further analyses in the field are re-
quired before any management actions are taken.

Range-wide habitat analyses such as the one described in this
study might provide similar pertinent information for establishing
conservation strategies and identifying conservation priorities in
different locations of the geographic range of many other endan-
gered species around the world. Although the final selection of
areas for conservation needs to explicitly consider human factors
(e.g., land use, land tenure, infrastructure) and treat them as cou-
pled human-natural systems in order to achieve both socioeco-
nomic and ecological sustainability (Liu et al., 2007), the results
from range-wide evaluations provide the biophysical foundation
to help delineate areas for future socioeconomic feasibility
assessments.
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